Inhalt

Vorwo	rt5
Vorwo	rt zur 2. Auflage
1	Der Ursprung der DIN EN 62061 (VDE 0113-50) –
	darum musste sich etwas ändern
1.1	Die EG-Maschinenrichtlinie und ihre Folgen
1.2	Geschichte der DIN EN 954-1 – eine Norm mit Grenzen
1.3	Die DIN EN 61508-1 (VDE 0803-1):2011-02 als Grundlage zur
	Bewertung von elektrischen/elektronischen/programmierbaren
	Lösungen
1.4	European Project STSARCES – die EU macht Druck
1.5	Die Welt der Theorie und der Praxis –
1.6	eine Anwendernorm ist notwendig
1.6	Der Anwender muss umdenken – was hindert ihn daran?
1.7	Zusammenführung der DIN EN 62061 (VDE 0113-50)
	und DIN EN ISO 13849-1 – längst überfällig
2	Moderne Maschinensicherheit – das europäische Referenzmodell
	und die Richtlinien
2.1	Das europäische Regelwerk
2.2	Warum grundlegende Sicherheitsanforderungen?31
2.2.1	Wie war das noch mal mit der Haftung?
2.2.2	Was möchte die Europäische Kommission?
2.2.3	Liste der grundlegenden Sicherheits- und Gesundheitsanforderungen 37
2.3	Haftung – Motivation der Maschinenhersteller
2.4	Der Anspruch der harmonisierten Normen
2.5	Die Organisation und das Management – warum wiederentdeckt? 52
2.6	Risikobeurteilung – immer notwendig und doch unterschätzt
2.7	Die Dokumentation
2.8	Das Ziel vor Augen –
2.0	die CE-Konformitäts- oder die CE-Einbauerklärung
2.9	Das CE-Kennzeichen anzubringen, aber wohin damit?
2.10	Der Prozess im Überblick
2.11	Wesentliche Veränderung59

3	Der Begriff Sicherheitsfunktion – was ist wahr?	63
3.1	Woher kommt der Begriff eigentlich?	63
3.2	Was muss ich berücksichtigen?	65
3.3	Wege aus der Krise	67
3.4	Der Streit um die Grenzen der Sicherheitsfunktion	68
3.5	Was sind keine Sicherheitsfunktionen und werden es auch nie sein? .	69
4	Sicherheitsfunktionen und Funktionale Sicherheit –	
	eine sinnvolle Kombination?	
4.1	Ist Funktionale Sicherheit etwas Neues?	
4.2	Warum soll Funktionale Sicherheit dem Anwender helfen?	
4.3	Was keine Funktionale Sicherheit sein kann	
4.4	Daten und Fakten	79
4.5	Die Geschichte des Sicherheitsbauteils –	
	was wurde früher dazu gesagt?	80
4.6	Worin liegt der Unterschied zwischen Sicherheitsbauteil und	
	Sicherheitsfunktion?	
4.7	Was kein Sicherheitsbauteil sein kann, es sei denn	85
4.8	Verantwortlichkeiten – nicht alles, was glänzt und gelb ist,	
	macht auch automatisch sicher	87
5	Die Anwendernorm DIN EN 62061 (VDE 0113-50),	
	in Verbindung mit DIN EN ISO 13849-1	91
5.1	Welche Norm ist anzuwenden: DIN EN ISO 13849-1	
	oder DIN EN 62061 (VDE 0113-50)?	
5.2	Die Zielsetzung	
5.3	Der Anwendungsbereich	
5.4	Begriffe und Abkürzungen.	
5.5	Abkürzungen	
5.6	Der Begriff Ausfallrate	. 110
5.7	Plan der Funktionalen Sicherheit –	
	unterschätzt und doch so wertvoll	. 113
5.8	Spezifikation der Anforderungen für sicherheitsbezogene	
	Steuerungsfunktionen	
5.8.1	Spezifikation der funktionalen Anforderungen für sicherheitsbezogen	
	Steuerungsfunktionen	. 117
5.8.2	Spezifikation der Anforderungen zur Sicherheitsintegrität	
	für sicherheitsbezogene Steuerungsfunktionen	118
		. 110
5.9	Entwurf und Integration des sicherheitsbezogenen elektrischen Steuerungssystems (SRECS).	

5.9.1	Vergleich zu DIN EN ISO 13849-1	. 120
5.9.2	Allgemeine Anforderungen	. 123
5.9.3	Anforderungen zum Verhalten bei Erkennung eines Fehlers	. 124
5.9.4	Anforderungen zur systematischen Sicherheitsintegrität	. 126
5.10	Entwurf des sicherheitsbezogenen elektrischen Steuerungssystems	. 129
5.10.1	Entwurf der Systemarchitektur	. 131
5.10.2	Entwurf des Teilsystems (en: subsystem)	. 134
5.10.3	Entwurf des Teilsystemelements (en: subsystem element)	. 135
5.10.4	Ein exemplarisches System	. 136
5.10.5	Bestimmung des erreichten Sicherheitsintegritätslevels (SIL)	
	oder Performance Level (PL)	
5.11	Realisierung von Teilsystemen (und SRP/CS)	
5.11.1	Anforderungen für den Entwurf	
5.11.2	Sicherheitsparameter des Teilsystems	
5.11.3	Auswahl geeigneter Komponenten und Geräte	. 145
5.11.4	Bestimmung der sicherheitsbezogenen Leistungsfähigkeit	
	des Teilsystems	
5.11.5	Strukturelle Einschränkungen der Sicherheitsintegrität der Hardware	
	von Teilsystemen	
5.11.6	Abschätzung des Anteils sicherer Ausfälle (SFF)	
5.11.7	Anforderungen zur Wahrscheinlichkeit Gefahr bringender zufälliger	
	Hardwareausfälle von Teilsystemen	. 153
5.12	Abschätzung der Wahrscheinlichkeit Gefahr bringender zufälliger	
	Hardwareausfälle von Teilsystemen	
5.12.1	Empfehlung B_{10} -Werte unter Standardbedingungen, Siemens AG	
5.12.2	Empfehlung B_{10D} - und $MTTF_D$ -Werte nach DIN EN ISO 13849-1	
5.12.3	Basis-Teilsystemarchitekturen A bis D	. 160
5.13	Bestimmung des erforderlichen Sicherheitsintegritätslevels SIL –	
	was will ich eigentlich?	
5.14	Faktor der Ausfälle infolge gemeinsamer Ursache β (CCF-Faktor)	. 174
5.15	Benutzerinformationen des sicherheitsbezogenen elektrischen	
	Steuerungssystems (SRECS).	
5.16	Validierung des Steuerungssystems	
5.17	Modifikation	
5.18	Dokumentation eines SRECS	. 181
5.19	Leitfaden für den Entwurf eines sicherheitsbezogenen	
	Steuerungssystems (SRECS)	
5.20	Ein Beispiel zur praktischen Vorgehensweise	. 185
5.21	Vereinfachte Vorgehensweise mit B_{10D} , $MTTF_D$ und erreichbarer	
	PFH_{D}	. 196

5.21.1	Beispiel mit der vereinfachten Vorgehensweise
5.22	Zusammenfassung – Schritt für Schritt
6	Das VDMA-Einheitsblatt 66413
6.1	Motivation der Komponentenhersteller und Maschinenhersteller 203
6.2	Warum erst jetzt? – ein Erklärungsversuch
6.3	Gerätetypen – ohne sie geht nichts mehr heute
6.4	Kennwerte auf Basis der Gerätetypen – Schluss mit den Diskussionen 208
6.5	Anwendung der Gerätetypen – die Praxis ist maßgebend209
6.5.1	Anwendung Gerätetyp 1
6.5.2	Anwendung Gerätetyp 2
6.5.3	Anwendung Gerätetyp 3
6.5.4	Anwendung Gerätetyp 4
6.6	Austausch elektronischer Daten für alle lesbar – XML soll helfen215
6.7	Erläuterungen zu einigen wichtigen Kennwerten
7	Typische grundlegende Architekturen221
7.1	Architekturen im Überblick
7.2	Diagnosedeckungsgrad (DC)222
7.3	Einkanalig ohne Testung
7.4	Einkanalig mit Testung
7.5	Zweikanalig ohne Testung230
7.6	Zweikanalig mit geringer bis mittlerer Testung231
7.7	Zweikanalig mit hoher Testung
8	Tipps und Beispiele
8.1	Liste oft verwendeter Sicherheitsfunktionen
8.2	Allgemeine Betrachtungen
8.2.1	Definieren einer Sicherheitsfunktion einfach gemacht
8.2.2	Warum darf man mit der DIN EN 62061 (VDE 0113-50)
	"nicht elektromechanische Komponenten" (z. B. Ventile) berechnen? 240
8.2.3	Was tun mit den Kategorien der C-Normen?241
8.2.4	Die Berechnungsmethode der DIN EN 62061 (VDE 0113-50):2016-05,
	Abschnitt 6.7.8.2 ist "normativ", warum ist die der
	DIN EN ISO 13849-1:2016-06, Anhänge C und K dagegen nur
	"informativ"?
8.2.5	MTTF _D -Wert gleich PFH _D -Wert
8.2.6	Verschleißbehaftete Komponenten und die Kategorie 2
8.2.7	Was bedeutet T_1 als Proof-Test oder Lebensdauer in der Praxis? 249
8.2.8	T_{10D} und T_1 , wann gilt was und warum?

8.2.9	Den Betätigungszyklus C (1/h) im Verhältnis zu den effektiven	
	Betriebsstunden im Jahr umrechnen?	253
8.2.10	Bei einer einkanaligen Architektur gilt $PFH_D = (1 - DC) \cdot \lambda_D$ –	
	Was passiert mit dem Diagnose-Testintervall T_2 ?	254
8.2.11	Welches erforderliche Testintervall ist für welchen SIL sinnvoll?	
8.3	Grundsätzliche Betrachtungen – Sensorik	257
8.3.1	Not-Halt-Befehlsgeräte – jedes für sich ist Teil einer entsprechenden	
	"ergänzenden" Sicherheitsfunktion	257
8.3.2	Verschleißbehaftete Komponenten haben keinen Anteil sicherer	
	Ausfälle (SFF) – ob Sensor oder Aktor	258
8.3.3	SIL 2 in einer zweikanaligen Architektur ohne Diagnose	
	(SFF = 80 %?) – bringt das etwas?	260
8.3.4	Muss ein Zustimmschalter als Teil einer Sicherheitsfunktion	
	berücksichtigt werden?	261
8.3.5	PL e oder SIL 3 mit einem Positionsschalter mit getrenntem	
	Betätiger?	262
8.3.6	Drehzahlüberwachung –	
	wann dürfen die Geber außer Acht gelassen werden?	264
8.3.7	Stromwertüberwachung eines Motors in SIL 2	265
8.4	Grundsätzliche Betrachtungen – Aktorik	268
8.4.1	Muss ein Antrieb (Motor) in einer Sicherheitsfunktion berücksichtigt	
	werden?	268
8.4.2	Zwei Lastschütze an einem einzelnen sicherheitsgerichteten Ausgang	
	mit SIL 3	269
8.4.3	Zwangsgeführte Kontaktelemente von Hilfsschützen	
	und Spiegelkontakte von Leistungsschützen	269
8.4.4	Ist eine Überwachung von Hilfs- oder Leistungsschützen	
	durch nicht sicherheitsgerichtete Eingangsbaugruppen möglich?	272
8.4.5	Welcher PL oder SIL kann mit einem einzelnen Leistungsschütz	
	erreicht werden?	
8.4.6	Bewerten von "Standard-Ausgangsbaugruppen"	274
8.4.7	Bewertung von Hilfsschützen oder Koppelrelais	
	in einer Sicherheitsfunktion	
8.4.8	Stern-Dreieck-Schaltung sicherheitsgerichtet bewerten	
8.4.9	Lastfreies Schalten mit Leistungsschützen oder Hilfsschützen	
8.4.10	Was tun, wenn keine MTTF _D -Werte vorliegen?	282
9	Berechnungen von typischen Sicherheitsfunktionen	285
9.1	Sicherheitsbezogene Stoppfunktion, eingeleitet durch eine	
	beweglichtrennende Schutzeinrichtung (Schutztür, -klappe,)	287

9.2	Sicherheitsbezogene Stoppfunktion, eingeleitet durch eine nicht	
	trennende Schutzeinrichtung (Lichtvorhänge, Laserscanner,)	295
9.3	Handbetätigte Befehlseinrichtungen (Handsteuerung)	
9.4	Zweihandschaltung	299
9.5	Manuelles Aufheben von Sicherheitsfunktionen	301
9.6	Einrichten, Teachen, Umrüsten, die Fehlersuche sowie für Reinigun	ngs-
	oder Instandhaltungsarbeiten	303
9.7	Sichere Bewegungen	305
9.8	Sichere Positionserfassung	307
9.9	Auswahl von Steuerungs- und Betriebsarten	310
9.10	Zuhaltung einer Schutzeinrichtung	312
9.11	Funktion zum Stillsetzen im Notfall	315
9.12	SIL 1 und SIL 2 gleich SIL 3	322
10	Mal kritisch hinterfragt	327
10.1	Die Not-Halt-Funktion sinnvoll bewerten	
10.2	Betriebsarten	332
10.3	Die Zuhaltung einer Verriegelungsreinrichtung berücksichtigen	337
10.4	Nicht alles muss berechnet werden	339
10.5	Nur sinnvolle Diagnosedeckungsgrade verwenden	341
10.6	"Standard"-Komponenten mit Vorsicht wählen	343
10.7	Ein Vergleich mit dem Anhang K der DIN EN ISO 13849-1:2016-0	
	lohnt sich	345
10.8	Die Einstufung des Risikos einmal anders vornehmen	
10.9	Den Prozess als Hilfsmittel nutzen	352
11	Die Mathematik und das Warum	353
11.1	Definition der Wahrscheinlichkeit Gefahr bringender Ausfälle	353
11.1.1	Teilsystemelemente und Teilsysteme	
11.1.2	Ausfallraten	353
11.1.3	Definition des <i>PFH</i> _D	
11.2	Einkanalige Architektur	
11.2.1	Annahmen	
11.2.2	Logische Darstellung	
11.2.3	Wahrscheinlichkeitsblockdiagramm	
11.2.4	Berechnung	
11.2.5	<i>PFH</i> _D der Teilsystemarchitektur C	
11.3	Zweikanalige Architektur	
11.3.1	Annahmen	
11.3.2	Logische Darstellung	357

11.3.3	Wahrscheinlichkeitsblockdiagramm	358
11.3.4	Berechnung	
11.3.5	<i>PFH</i> _D der Teilsystemarchitektur D	
11.4	Diskussion der Ergebnisse der einkanaligen Architektur	361
11.4.1	Diagnosedeckungsgrad 60 %	361
11.4.2	Diagnosedeckungsgrad 90 %	362
11.4.3	Schlussfolgerung	363
11.5	Diskussion der Ergebnisse der zweikanaligen Architektur	364
11.5.1	Diagnosedeckungsgrad 60 %	364
11.5.2	Diagnosedeckungsgrad 90 %	
11.5.3	Diagnosedeckungsgrad 99 %	
11.5.4	Schlussfolgerung	
12	Ausblick	369
13	Terminologie	371
14	Fachwörterbuch	403
Literat	ur	413
Stichw	ortverzeichnis	417