Tabelle 7.3: Übersicht der Bauformen von Feststoffmischern (Fortsetzung)

Grundtypen von Feststoffmischern	Charakteristische Bauformen	
Schwerkraft- und pneumatische Mi- scher ohne bewegte Mischwerkzeuge	Schwerkraft- mischer	Mischsilos (ein- oder mehrstufig, Zellensilos); Silos mit Misch- und Teilrohren; Silos mit äu- Berer oder innerer Zirkulation
	Pneumatische Mischer	Wirbelschichtmischer Strahlmischer
mischende Lagerverfahren	geschichtete Mischhalden	

7.4 Rühren

Es werden hier nur Gemische von nicht hochviskosen Newtonschen oder nicht-Newtonschen Flüssigkeiten behandelt. Nach Tabelle 7.1 ist die den Aggregatzustand eines solchen Gemisches bestimmende Komponente die Flüssigkeit. Die andere Komponente, die zugemischt wird, kann eine in dieser Flüssigkeit gut lösliche oder auch schwer lösliche andere Flüssigkeit (Homogenisieren oder Emulgieren), ein körniger Feststoff (Suspendieren) oder gasförmig (Begasen von Flüssigkeiten) sein. Das Rühren erfolgt meistens mithilfe rotierender, seltener schwingend bewegter Rührwerkzeuge oder mit sog. statischen Rührern, die keine bewegten Bestandteile enthalten.
Die wichtigsten Aufgaben, die durch Rühren gelöst werden können, sind folgende [26, 27]:

- Homogenisieren: Vermischen und Vergleichmäßigen von ineinander löslichen Flüssigkeiten, Konzentrations- und Temperaturausgleich (z. B. Verdünnen konzentrierter Lösungen, Neutralisieren)
- Suspendieren: gleichmäßiges Verteilen, ggf. Lösen und In-SchwebeHalten von körnigen Stoffen (z. B. Lösen von Feststoffen, Kristallisieren, Auswaschen von körnigen Stoffen, Erzeugen einer Schwertrübe)
- Emulgieren: Dispergieren einer Flüssigkeit in einer anderen, d.h. Zerteilen und Feinverteilen von Tröpfchen einer Flüssigkeit in einer zweiten, in der sie nur schwer löslich ist (z. B. Emulsions-Polymerisation, Flüssig-Flüssig-Extraktion)
- Begasen: Dispergieren eines Gases in einer Flüssigkeit, d.h. Zerteilen des Gases in kleine Teilchen oder Blasen und ihr nachfolgendes Einbringen in die Flüssigkeit oder Suspension bzw. ihre dortige gleichmäßige Verteilung (z.B. Gas-Flüssig-Reaktionen, Absorption, aerobe

Fermentation, Sauerstoffeintrag bei der Abwasserreinigung, Flotation, Mammutpumpen)

- Beschleunigung des Wärmeaustausches zwischen der Flüssigkeit oder Suspension und der Wärmeübertragungsfläche (Heiz- oder Kühlfläche) (z. B. Abführen der Reaktionswärme, Beschleunigung von Reaktionen durch Erwärmen)

Oft sind mehrere grundlegende Rühraufgaben gleichzeitig in komplexer Weise zu erfüllen.

7.4.1 Rühren mit rotierenden Rührorganen

In Bild 7.6 ist der Aufbau eines Rührwerks gezeigt. Der Behälterboden ist meistens gewölbt, abgerundet, seltener halbkugelförmig oder flach.

Bei zentrisch eingebauter Rührwelle und großen Reynolds-Zahlen (hohe Drehzahl, großer Rührerdurchmesser, kleine oder mittlere Viskosität) rotiert die ganze Flüssigkeit gleich einem Festkörper, sodass sich an ihrer Oberfläche eine trichterförmige Vertiefung (Trombe) ausbildet, der Mischeffekt geht zurück, beim Trichter tritt Luftansaugung und Schaumbildung auf und bei Suspensionen kommt es zu einer Trennung im Zentrifugalfeld. Diese Nachteile lassen sich mithilfe von Stromstörern oder durch den nicht zentrischen (exzentrischen) geneigten Einbau des Rührers vermeiden.
Die in der Praxis eingesetzten Rührorgane lassen sich in drei Gruppen einordnen. Man unterscheidet

- axialfördernde
- radialfördernde und
- tangentialfördernde Rührer.

Ausschlaggebend für die Bezeichnung des Rührertyps ist das in unmittelbarer Nähe des Rührorgans erzeugte Strömungsfeld, die Hauptrichtung der das rotierende Rührorgan verlassenden Flüssigkeitsströmung. Bild 7.7 zeigt charakteristische axialfördernde Rührer.

Bild 7.7: Axialfördernde Rührer: (A) Schrägblattrührer, (B) Propellerrührer, (C) Schraubenrührer und (D) Wendelrührer

Axialfördernde Propellerrührer werden in der Regel mit 2, 3 oder 6 Flügeln, die Schrägblattrührer mit 6 viereckigen, trapezförmigen oder besonders geformten Schaufeln versehen.
Die am häufigsten verwendeten Bauformen der radialfördernden Rührer sind der Scheibenrührer, der Radialschaufelrührer und der Impellerrührer (vgl. Bild 7.8).

(A)

(B)

(C)
Bild 7.8:
Radialfördernde Rührer: (A)
Scheibenrührer, (B) Radialschau-
felrührer, (C) Impellerrührer

An der Kreisscheibe des radialfördernden Scheibenrührers werden meistens 6 radial angeordnete ebene Rechteck-Blätter bzw. Turbinenschaufeln befestigt (in einseitiger oder zweiseitiger Bestückung). Die Scheibe wird mit mittlerer Drehzahl bzw. Umfangsgeschwindigkeit bewegt und bei niedriger oder mittlerer Viskosität angewandt, in der Regel bei Einbau von 4 Strombrechern.
Einige Bauformen der tangentialfördernden Rührer sind in Bild 7.9 dargestellt. Es sind Ankerrührer, Gitter- und Blattrührer. Letzterer kann als tangential-radialfördernd betrachtet werden.

Der Ankerrührer ist ein langsamlaufender Rührer, hat in der Regel zwei Schaufeln (Ankerarme), die dicht an der Behälterwand bewegt werden; man setzt sie hauptsächlich zur Intensivierung des Wärmeaustausches ein. Auch der Gitterrrührer und der Blattrührer sind langsamlaufend und werden mit und ohne Stromstörer gebaut.
Außer den aufgezählten Rührern gibt es zahlreiche andere Bauformen. Diese sind zum größten Teil rotierende Werkzeuge, doch werden auch in Axialrichtung schwingende (Vibrations-)Rührer verwendet, bei denen die Strömung in Tangentialrichtung vernachlässigt werden kann.

7.4.2 Leistungsbedarf des Rührers

Eine wichtige Aufgabe besteht in der Bestimmung der mit dem Rührorgan in die Flüssigkeit eingebrachten Rührenergie bzw. der benötigten Rührleistung.

Die Rührleistung P von rotierenden Rührern wird mithilfe von im Labor durchgeführten Modellversuchen und auf Grund der Ähnlichkeitstheorie - unter Berücksichtigung der Kriterien der geometrischen und physikalischen Ähnlichkeit - angegeben. Es lassen sich drei unabhängige Ähnlichkeitskriterien angeben:

$$
N e=\frac{P}{\rho n^{3} d^{5}} \quad \operatorname{Re}=\frac{n d^{2} \rho}{\mu} \quad F r=\frac{n^{2} d}{g}
$$

Die Froude-Zahl $F r$ kann man in den meisten Fällen vernachlässigen. Die Leistungskennzahl hängt dann nur von der Reynolds-Zahl ab ($\mathrm{Ne}=$ $f(R e)$) und lässt sich nur experimentell bestimmen (vgl. Bild 7.10).

Bild 7.10: Leistungscharakteristik eines bestimmten Rührertyps mit und ohne Strombrecher

Entsprechend Bild 7.10 ist bei $R e-Z a h l e n ~<~ 10-60 ~ d e r ~ R u ̈ h r e f f e k t ~ g e r i n g, ~$ das Rühren verläuft laminar. Der Leistungsbedarf ist bei laminarem Rühren und bei gegebenem Rührertyp, bei festgelegter Drehzahl n und Durchmesser d eine lineare Funktion der Viskosität μ und ist von der Dichte ρ unabhängig. Im Übergangsbereich wird bei gegebenem Rührertyp die Leistung auch von der Viskosität und von der Dichte beeinflusst. Im turbulenten Bereich, d.h. im Newton-Bereich der Rührer, ist
die Leistungskennzahl konstant. Im turbulenten Bereich kann bei konstantem n und d der Einfluss der Viskositätsänderung auf den Leistungsbedarf vernachlässigt werden, der Einfluss der Dichte ist linear.

7.4.3 Homogenisieren mit rotierenden Rührorganen

Beim Rühren stehen zum Nachweis der Tatsache, dass das verfahrenstechnische Ziel, d.h. die gewünschte Mischgüte, erreicht wurde, zwei Methoden zur Verfügung:

- Schlieren-Methode: Flüssigkeiten mit unterschiedlichem Brechungsindex werden so lange gerührt, bis keine Schlieren mehr festzustellen sind.
- Entfärbe-Methode: Durch das Hinzumischen einer anderen Flüssigkeit oder eventuell einer zusätzlichen Chemikalie wird das System entfärbt. Dies ist als Zeichen der entsprechenden Mischgüte anzusehen.

Die für das Erreichen einer gewünschten Mischgüte benötigte minimale Rührzeit ist eine wichtige Kenngröße der Homogenisierung.

7.4.4 Suspendieren

Um spezifisch schwerere Körner in einer Flüssigkeit ($\rho_{s}>\rho_{\mathrm{l}}$) vom Boden des Rührerbehälters aufzuwirbeln und gegen die Schwerkraft in Schwebe zu halten, ist ein kontinuierlicher Energieeintrag, eine fortlaufende Betätigung des rotierenden Rührorgans notwendig.

- Bei Drehzahlen $<\boldsymbol{n}_{\min }$ werden die Körner nicht bewegt.
- Bei Drehzahlen $\boldsymbol{n}_{\text {min }}<\boldsymbol{n}<\boldsymbol{n}_{\text {S0 }}$ sind erste Kornbewegungen auf dem Rührerboden zu beobachten, ein Schwebezustand der Körner wird aber noch nicht erreicht.
- Bei Erreichen der Drehzahl $\boldsymbol{n}=\boldsymbol{n}_{\text {s0 }}$ werden einzelne Körner in der Nähe der Bodenplatte in den Schwebezustand versetzt.
Bei der Suspendierdrehzahl $\boldsymbol{n}=\boldsymbol{n}_{\mathrm{s}}$ werden die Körner aufgewirbelt und in Schwebe gehalten. Die Suspendierdrehzahl n_{S} wird unter Berücksichtigung folgender Kriterien bestimmt:
- Beim Aufwirbeln des Feststoffs soll erreicht werden, dass die einzelnen Körner höchstens eine Sekunde lang den Boden berühren (1-s-Kriterium).
- Die Körner sollen bis zu einer Höhe von 90% der Füllhöhe in Schwebe gehalten werden ($\mathbf{9 0}-\%$-Schichthöhen-Kriterium).
- Die Feststoffpartikel steigen bis an die Obergrenze der Flüssigkeitsschicht, sodass die feststofffreie, klare obere Flüssigkeitsschicht verschwindet.

Beim Suspendieren werden hauptsächlich axialfördernde Rührer verwendet. Die Rührbehälter haben meistens einen gewölbten Boden. Rührer mit ebenem Boden werden nur selten eingesetzt.
Eine kennzeichnende Größe beim Suspendieren ist die sog. Sinkleistung $\boldsymbol{P}_{\mathrm{S}}$, die sich als Produkt aus dem Gewicht der Partikeln mit dem Gesamtvolumen in der Flüssigkeit und der behinderten Sinkgeschwindigkeit ergibt:

$$
\begin{equation*}
P_{\mathrm{S}}=\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right) g V_{\mathrm{s}} V_{\mathrm{oH}} \tag{7.6}
\end{equation*}
$$

ρ_{s} Dichte Feststoff, ρ_{f} Dichte Flüssigkeit, g Fallbeschleunigung, $V_{\mathrm{S}} \mathrm{Ge}-$ samtvolumen, V_{oH} Sinkgeschwindigkeit

7.4.5 Emulgieren

Das Flüssig-Flüssig-Dispergieren, kurz Emulgieren, bedeutet die Herstellung eines Stoffsystems aus zwei ineinander schwer löslichen Flüssigkeiten, wobei die eine Flüssigkeit in Form kleiner Tröpfchen in der anderen verteilt ist. Wenn keine Turbulenz vorhanden oder nicht ausreichend stark ist, werden die beiden Flüssigkeiten durch eine Phasengrenze voneinander getrennt und sie schichten sich übereinander. Bei ausreichend starker Turbulenz, d.h. bei ausreichend hoher Rührerdrehzahl, treten entlang der Phasengrenze der Flüssigkeiten infolge großer lokaler Geschwindigkeitsunterschiede große Scherkräfte auf und eine der Flüssigkeitsphasen wird in einzelne Tropfen zerteilt. Das verfahrenstechnische Ziel beim Emulgieren ist gerade die Erzeugung von Tropfen mit einer großen spezifischen Oberfläche.

Der geeignete Rührertyp ist ein schnelllaufender radialfördernder Rührer mit scharfen Kanten und Ecken (Scheibenrührer) und ein mit Strombrechern versehener Rührbehälter. Bei Flüssigkeiten kleiner oder mittlerer Viskosität werden auch statische Rührer (Düsen) zum Emulgieren verwendet.

7.4.6 Begasen

Das Dispergieren von Gas in einer Flüssigkeit oder kurz Begasen bedeutet die Lösung von drei Teilaufgaben:

- Einbringen des Gases in die Flüssigkeit
- Zerteilung in Blasen
- Verteilung auf das Gesamtvolumen

Das verfahrenstechnische Ziel besteht in der Schaffung von Phasengrenzflächen zum Stoffaustausch zwischen den einzelnen Phasen (Chlorierung, Hydrierung, Oxidation) oder im vertikalen Transport von Flüssigkeit in Form eines Gemisches Flüssigkeit-Gas (Mammutpumpe) oder im Aufschwemmen von Feststoffpartikeln, die sich an die Bläschen anlagern (Flotation). Neben der Beschreibung der mit rotierenden Rührern arbeitenden Verfahren sei hier aus der zweiten Gruppe die einfachste Begasungseinrichtung erwähnt, bei der das Gas unter Hochdruck durch ein über den ganzen Behälterquerschnitt eingebautes Lochblech oder durch einen Siebboden eingeführt wird und keine weitere Rühreinrichtung zur Verteilung der Gasblasen verwendet wird.

Bild 7.11: Begasungsrührer: (A) Hohlrührer, (B) Scheibenrührer, (C) Kreuzbalkenrührer

Bei Begasungsrührern erfolgt der Gaseintrag über in der Nähe des Behälterbodens eingebaute Düsen oder ringförmige perforierte Rohre mit

Überdruck oder auch über einen rotierenden Hohlrührer, bei dem das Gas durch die hohle Achse angesaugt wird (vgl. Bild 7.11). Letzterer ist einfach, aber wegen der geringen geförderten Gasmenge nur begrenzt anwendbar.

7.5 Statisches Mischen von Flüssigkeiten

Statische Mischer, die keine bewegten Bestandteile enthalten, werden vom zu vermischenden Material durchströmt. Die dazu erforderliche Strömungsenergie bzw. die benötigte Druckdifferenz muss dem Mischgut übertragen werden. Der Mischer ist meistens ein Rohrabschnitt, in den zur Erreichung einer Mischwirkung Aufprall- oder Umlenkelemente eingebaut werden. Man unterscheidet turbulent und laminar durchströmte statische Mischer.

Bild 7.12: (A) Injektor-Mischer, (B) Statischer Turbulenzmischer mit Einbauten

Bei statischen Turbulenzmischern wird die Turbulenz in Strahlmischern, Injektoren oder in Mischkammern erzeugt oder aber durch den Einbau von Umlenkelementen (vgl. Bild 7.12) erreicht. Bei statischen Laminarmischern werden Gutströme durch Einbauten geteilt, gegeneinander verschoben und wieder vereinigt. Diese Mischer wurden hauptsächlich zum Vermischen hochviskoser Stoffe konzipiert, doch werden sie auch bei niedrigeren Viskositäten verwendet.

Mechanische Trennprozesse

8.1 Kennzeichnung der Trennprozesse

Die mechanischen Trennprozesse (Begriffsdefinitionen nach [31]) lassen sich in vier verschiedene Arten gliedern:

- Klassierprozesse dienen zur Trennung fester Teilchenkollektive nach Feinheitsmerkmalen wie Korngröße oder Sinkgeschwindigkeit.
- Sortierprozesse führen zur Trennung fester Teilchenkollektive nach Partikeleigenschaften wie Dichte, Farbe, Form oder Zusammensetzung.
- Fest-Flüssig-Trennverfahren dienen zur Abtrennung disperser fester Partikeln aus einer flüssigen Phase.
- Fest-Gasförmig-Trennverfahren leisten eine Abtrennung disperser fester Partikeln (Staub) aus Gasen.

Bei Klassierungen wird das Aufgabegut als Teilchenkollektiv einem Klassierapparat zugeführt, der es in zwei oder mehr Teilmengen (Fraktionen) zerlegt. Bei Zweiguttrennungen unterscheidet man Grobgut und Feingut. Ihre jeweiligen Anteile bezogen auf das Aufgabegut, Grobgutanteil g und Feingutanteil f, addieren sich stets zu 1.
Im Idealfall wird so getrennt, dass sich die Verteilungsdichtekurven von Grob- und Feingut nicht überschneiden, d.h. die Verteilungsdichtekurve des Aufgabegutes durch einen senkrechten Schnitt in zwei Flächen geteilt wird (Bild 8.1A).
Bei einer idealen Teilung wird dagegen ein Aufgabegut so zerlegt, dass die betrachteten Merkmale (z. B. Feinheit) in beiden Teilmengen gleich und gleich denen der Ausgangsmenge sind (Bild 8.1B)

Bild 8.1: Verteilungsdichtekurven für ideale Trennung (A) und ideale Teilung (B)

Bei Sortierprozessen verwendet man abhängig von der Partikeleigenschaft andere Bezeichnungen für die sich ergebenden Teilmengen, z.B. bei Dichtesortierern Leichtgut und Schwergut.
Bei einer realen Trennung überschneiden sich dagegen die Verteilungsdichtekurven von Fein- und Grobgut. Je nach Güte des Trennapparats ist die Überschneidung mehr oder weniger groß. Zur Kennzeichnung von Zweigut-Klassierprozessen werden die Verteilungsdichtekurven von Aufgabegut, Grob- und Feingut meist in einem gemeinsamen Diagramm dargestellt (vgl. Bild 8.2). Man gewichtet dann die Verteilungsdichten des Grobguts q_{G} und des Feinguts q_{F} mithilfe ihrer Mengenanteile g und f, sodass sich die aufgespannten Flächen der Grobguts- und Feingutskurve zur Aufgabegutkurve $q_{\mathrm{A}}(z)$ addieren. Für jeden Wert des Feinheitsmerkmals z gilt dann:

$$
\begin{equation*}
q_{\mathrm{A}}(z)=g q_{\mathrm{G}}(z)+f q_{\mathrm{F}}(z) \tag{8.1}
\end{equation*}
$$

Beim Wert z_{T} schneiden sich die Verteilungsdichten des Grob- und Feinguts genau bei 50% der Aufgabegutkurve, daher wird auch die Bezeichnung z_{50} verwendet. Man bezeichnet diesen Wert des Feinheitsmerkmals als Median-Trenngrenze oder präparative Trenngrenze. Ist das Feinheitsmerkmal ein Teilchendurchmesser, so ergibt sich der bekannte Ausdruck Trennkorndurchmesser d_{T} oder auch d_{50}.

Sachwortverzeichnis

Symbole

2-Keto-3-desoxy-6-phospho-gluconat-Weg 443 6-Phosphogluconat 445

A

Abbaubilanz 447
Abbaurate 641
Abfallbehandlung

- biologische 669

Abfallrecht 661
Abfallsäure 530
Abfallvermeidung 661
Abfallverwertung 661
Abfallwärme 209
Abkühl-Phase 505
Abluftanalytik 649
Abluftinhaltstoffe 649 f .
Abluftreinigung

- biologische 633, 635
- Einsatzmöglichkeiten 636
- katalytische 629
- Kriterien 635

Abluftreinigungsverfahren 633 f .
Abscheidegrad 107 Abscheiden von Quecksilber 622
Abscheideprinzip

- Gewebefilter 62
absetzbare Stoffe 599
Absetzbecken 641
Absorption 224, 251, 258, 664
Absorptionsgleichgewicht 226
Absorptionskolonne 232, 624
Absorptionsschritt 635
Absorptionsverfahren
- nicht regenerative 624

Absterbegeschwindigkeitskonstante 503, 507
Absterbephase 476

Abtötung durch Hitzeeinwirkung 503
Abtötungsbedingungen 502
Abtötungskurven 504
Abtötungsrate 503
Abtriebsgerade 204f., 210
Abtriebsgeraden 268
Abtriebssäule 199, 203
Abwärme 614
Abwasser

- Fortleitung von 595

Abwasserarten 595
Abwasserbehandlung 487, 604
Abwasserinhaltstoffe 596
Abwasserkläranlage 404
Abwasserparameter 599
Abwasserreinigung 501, 633 , 638
Abwassertechnik 490
Abwasserteiche 615
Abweiseradsichter 111
Acetobacter 425, 463
Acetyl-CoA 446
acidophil 463
Adaption 473
Adaptionsphase 636
Adenin 410
Adenosintriphosphat 440
adiabatische Temperaturdifferenz 386
adiabatischer Betrieb 384, 387, 390
Adsorbenzien 241 ff .
Adsorber 622, 657

- Bauarten von 250

Adsorption 238, 240, 572 622, 664
Adsorptionsgleichgewichtskurven 239
Adsorptionsisothermen verschiedener Stoffe 240
Adsorptionsrad 250, 628 f .
Adsorptionsverlauf im Festbettadsorber 247

Ahnlichkeitstheorie 98
aerobe Zonen 612
erobe Atmung 450
aerober Vorgang 609
Aerobier 442
Agar 461
Agglomeratbildung 124
Agglomerate 573
Agglomerieren 122
Airlift-Reaktor 490f., 574
Aktinomyceten 428, 463, 576
Aktivkohle 243, 322, 655
Aktivkoks 243, 628
Aktivtonerde 243
akut-toxisch 597
Algenpilz 432
alkaliphil 463
Alkohol-Gärung 455
Alkylierung 556
Alterung der pH-Elektrode 521
Altlasten 661
Aminoglykosid-Antibiotika 578
Ammoniumoxidierer 608
Amphotericin B 579
Amplitude 109
Anabolismus 437, 441
anaerobe Atmung 450
anaerobe Fermentation 673
anaerobe Verfahren 672
Anaerobier 442

- obligate 453

Analysemethoden 646, 649
Analyseprobe 55
Analysesichtung 61
Analysesiebung 60
anaplerotische Sequenzen
439
Anatas 537, 539
Ankerrührer 97
Anlaufphase 472
anoxische Zone 612
Anschmelzagglomeration 122
Ansprechzeit 521, 524
Antibiotika 404, 576, 579

Antischaummittel 519
Anzucht von Impfmaterial 485
AOX 598
Äquivalent-Reaktionsgeschwindigkeit 304
Äquivalentdurchmesser 47
Arbeitsgerade 205, 212, 268
Arbeitsgeraden für den
Desorptionsprozess 234
Arbeitsmarktsituation 22, 33
Arbeitsplatzprofile 30
Archaebakterien 430
Archimedes-Schneckenpumpe 601
arithmetisches Mittel 88
Armerze 584, 591
Arrhenius-Gleichung 312, 314,

$$
379,387,392,508
$$

Ascomycetes 431
Aspergillus 433, 577
Aspergillus niger 434, 568 f ., 571
Aspergillus oryzae 435
Aspergillus-Arten 569 f., 581
Atmung

- aerobe 450

Atmungskette 439, 448
Atmungsprozesse 443
ATP 447, 450
ATP-Hydrolyse 441
Aufarbeitung 572
Aufbauagglomeration 122, 126
Aufheiz-Phase 505
Auflagerspannung 79
Aufsalzung 606
Aufschluss 113
Aufstromklassierern 112
Auftreffhäufigkeit 108
Ausbeute 299, 475, 572
Auslaugung 283
Auslaugverfahren 659
Auslegung

- wärmetechnische 383

Auspressen 116, 118
Austraghilfen 80
autokatalytischen Reaktionen 362
Autoklav 502, 505, 512
Autotrophie 441
axiale Strömung 495
axialfördernde Rührer 96
Azeotropbildung 278
azeotrope Destillation 196
azeotropes Gemisch 195

Azospirillum brasilense 425 Azospirillum lipoferum 425

B

Bachelor 34 f
Bachelor-Absolventen 39
Bacillus brevis 435
Bacillus cereus 584
Bacillus megaterium 417, 584
Bacillus polymyxa 435
Bacillus stearothermophilus 462, 507ff.
Bacillus subtilis 434
Backenbrecher 141 f .
Bacteriostatica 404
Bakterien

- chemolithotrophe 429
- coliforme 426
- Grundformen 408
- halophile 430
- heterotrophe 609
- lithotrophe 609
- methanogene 430
- thermoacidophile 430

Bakterienchromosom 407, 409
Bakterizide 404
Bandextraktionsanlage 284
Bandtrockner 255
Basidomycetes 433
batch culture 469
Batch-Kultur 478
Batch-Sterilisation 505
Batch-Verfahren 580
Bausteine 437
Begasen 94, 101
Begeißelung 417
Bekämpfung von Pflanzen-
krankheiten 580
Beladungsdiagramm 260,
264, 268
Belagschwinger 109
Belastungsgrenze 273
Belebtschlammbecken 639
Belebtschlammverfahren 639, 641
Belebungsbecken 607, 609, 640
Berechnung von Packungskolonnen 222
Berechnungsgrundlage für Sterilisationszeit 507f.
Berufschancen 24

Beschäftigungsfelder 28
Beschäftigungsfähigkeit 40 f.
Beseitigen von Dioxinen 622
Bestimmung der Frisch- und
Trockenmasse 468
Bestimmung der Zusammen-
setzung 596
Bestimmung des Protein-
gehalts 468
Bestimmung essenzieller
Elemente 468
Betriebskosten 496
Betriebspunkt

- autotherm 382

Bettfilter 511
Bettreaktoren 487
Beurteilungskriterien 596
Bewegungsorganell 417
Bierbrauen 400
Bifidobacterium 428, 456
Bilanzraum 301
Bildanalyseverfahren 56
Bildungssystem 39
Binodalkurve 260
Bioabfall 670
Bioakkumulation 597
Biobergbau 584
Biochemie 423
Biofilm 641
Biofilter 633, 641
Biofilterverfahren

- schematisch 642

Biogasanlage 661, 674
biologische Abfallbehandlung
669
biologische Abluftreinigung 633, 635
biologische Abwasserbehand-
lung 605
biologische Abwasserreinigung 639
biologische Phosphatelimination 607
biologische Sensoren 526
biologische Verfahren 658
biologischer Rasen 638
biologischer Sauerstoffbedarf
598
Biomassenbilanz 477
Biomembranreaktor 645
Biomembranverfahren 644
Bioreaktoren 483
Bioreaktorsysteme $47 /$
Biosensoren 526

Biotechnologie 29 Bioverfahrenstechnik 28
Biowäscher 633, 637
bipolar 417
Bischoff-Verfahren 623
Blähmittel 562
Blasen 46
Blasendestillation 192
Blasensäule 236, 395, 490
Blasensäulen-Reaktor 490
Blasensäulenreaktor 396
Blattrührer 97
Blockheizkraftwerk 663
Blockschaumstoff 566
Boden 214

- schadstofffreier 653

Bodenabstand 218
Bodenanzahl 218
Bodenkolonnen 214, 216, 218 ,

236, 640

Bodenkonstruktionen 158
Bodenschutzgesetz 653
Bodenwirkungsgrad 201, 216, 272
Bodenzahl

- praktische 272

Bologna-Beschluss 34
Bond-Zerkleinerungsgesetz 135
Böschungswinkel 75
Brechen 131
Brecherarten 142
Breitbandantibiotika 579
Brennstoff-Stickoxid 625
Brenztraubensäure 438
Brevibacterium linens 428
Bruchbildung 132
Bruchspannung 132
Brückenbildung 79
Brüden 167ff.
Brüdenverdichtung 169
BSB 598
BSB $_{5}$-Werte 663
Bunker 75
Bunsen-Absorptions-
koeffizient 227
Bypass 520

C

C/N-Verhältnis 671
Canda lipolytica 574
Candida guilliermondii 569
Candida lipolytica 574

Candida utilis 434
Carbonat-Atmung 450
Cephalosporin 577ff.
Cephalosporium 577
chancenmaximierend 24
Charakterisierungsgrößen 516
Chemiereaktoren 394
chemischer Sauerstoffbedarf 598
Chemisorption 225
chemoorganoheterotroph 431
Chemostat 476, 479
chemotherapeutisch 579
Chemotrophie 442
Chlamydien 426
Chloridverfahren 536, 539
Chloroplasten 406, 418, 420
Chlortetracyclin 578
chronisch-toxisch 597
Chytridiomycetes 432
Citromyces pfefferianus 569
Citronensäure 568
Citronensäure-Cyclus 447f.
Clark-Prinzip 522
Clostridien 454
Clostridium acetobutylicum
403, 434
Clostridium botulinum 427
Clostridium tetani 427
Coenzym 407
Coenzym A 447
Coking 549
Corynebacterium 428, 569, 574
Corynebakterium glutamicum 428
Coulter-Counter 466
Cracking

- katalytisches 550
- thermisches 548

Cracking-Verfahren 547
credit points 35
CSB 598
CSB-Belastung 674
CSTR 337
Cyclisierung 550
Cytoplasma 406, 412, 419, 447
Cytoplasmamembran 406,
413
Cytosin 410

D
Daltonsches Gesetz 161, 184, 186, 229, 239, 241
Damköhler 293
Dampfdruck 163
Dampfdruckkurven 164, 184, 197
Dampfgeschwindigkeit 216
Dampfinjektion 509 f.
Dampfsterilisator 502
Danielli-Modell 412
Darmbakterien 418
Deep Shaft Reactor 491 f .
Degussa-Verfahren 656
Dehydrierung 553
Dehydrogenierung 447, 453
Dekantierzentrifuge 614
Denaturierungsgeschwindig-
keit 508
Denitrifikation 451, 609, 612
DENOX-Anlage 627
Deponieaufbau 662
Deponieflächen 662
Deponiegas 662
Deponien

- geordnete 662

Desinfektion 485
Desorption 226
Desorptionsvorgang 244
Desoxyribonucleinsäure 409
Desoxyribose 411
Destillation 184

- extraktive 195

Destillationsvorgang 192
Desulfococcus 426
Desulfomonas 426
Desulfovibrio 426
Deuteromycetes 433
Dichtesortierer 104
Dienstleistungsgesellschaft 31
differenzielle Methode 311
Diffusion 318, 498

- instationäre 325

Diffusionsbarriere 412
Diffusionsbatterie 280
Diffusionskoeffizient 280, 318
Diffusionsvorgang 280
Dihydroxyacetonphosphat 444
Diisocyanate 559
Dimensionierung 214, 231
Diplomstudiengang 34
direkte Laugung 585

Direkteinleiter 596
diskontinuierliche Kultur 469
diskontinuierliche Rektifikation 212
diskontinuierlicher Betrieb 334 f .
disperse Systeme 46
Dispersitätszustand 130
DNA-Chromosomen 409
DNA-Replikation 411
DNA-Sequenzen 411
DNA-Verdopplung 409 f .
Doppelkontaktverfahren 534
Dosiermaschine 563
Drehfilter 574
Drehrohrofen 664
Drehzahl-Messung 518
Dreiwalzenmühle 150
Druck

- kritischer 285
- osmotischer 414, 570

Druck 518
Druck-Messung 518
Druckdiagramm für das ideale Zweistoffgemisch 186
Druckfestigkeit 79
Druckfilter 119
Druckspannung 73
Druckverlust 217f.
Druckverlustdiagramm 220 f.
Dünnschichtverdampfer 165, 193
Düsenboden 214
Durchbruchsbeladung 246
Durchgangssumme 49
Durchgangssummenkurve 50
Durchgangssummenverteilung 136
Durchlaufverfahren 281
Durchsatz 295
Durchströmungsverfahren 63 Durchtrittswahrscheinlichkeit 108
dynamische Methode 499 dynamische Verfahren 671

E

ebulioskopische Konstante 163
ECTS 36
Einbauten 214
Eindicken 115
Einsatzgebiet Elektrofilter 621

Einsatzgebiet Gewebefilter 621
Einsatzmöglichkeiten

- berufliche 23
- branchenübergreifende 27

Einschlussverfahren 655
Einstabsmesskette 520
Eintauchverfahren 281
Einwalzen-Prallbrecher 144
Einzelkornzerkleinerung

- Beanspruchungsarten 133

Einzelpartikelzähler

- optisch 57

Einzelproben 55
Einzelsubstanzen 599
Eisen-Atmung 451
Elastomere 564
Elektrofilter

- Einsatzgebiet 620

Elektronenakzeptor 450, 453
Elektronendonator 442, 453, 610, 612
Elektronentransport 414
Elektronentransportkette 449 f.
elektrostatische Kräfte 65 Embden-Meyerhof-ParnasWeg 443f., 455
Emissionsüberwachung 646
empirische Streuung 89
Emulgieren 94, 100
End-of-the-pipe-Technik 28, 661
Endocytose 420
Endosymbionten 427
Energieeintrag durch Flüssigkeitspumpen 492
Energieeintrag mit Rührorganen 494
Energieumwandlung 436 Enterobacter aerogenes 426 Enterobacteriaceen 473
Entfärbe-Methode 99
Entgasungseinrichtung 663
Entmischung

- vollständige 90

Entner-Doudoroff-Weg 445 f .
Entparaffinierung 172, 545
Entsorgungskonzepte 665 Entsorgungstechniken 661
Entsorgungswirtschaft 665
Entspannungsverdampfen 166 f .
Entstaubung 664

Entwässern 115
Enzymaktivität 469, 473, 571
Enzymelektrode 527
Enzymkonzentration 473
Erdölaufbereitung 541
Erdöldestillation 542 f.
Erdölfraktionen 542
Ergänzungsstoffe 459
Ernährungstypen 441
Ertrag 475
Ertragskoeffizient 475, 480
Erzeugniskonzentration 212
Erzeugnisprodukt 212
Erzvorkommen 532
Escherichia coli 426, 438, 443,
452, 462, 503
essenzielle Elemente 468
Essig-Generator 488
Essig-Herstellung 486
Essigsäurebakterien 401
Etagenfilter 644
Eubakterien 577
Eukaryoten 411, 418, 447
Eumyceta 431
Eumycota 432
Eutrophierung 597, 605
Exocytose 420
exotherme Reaktionen 362
exponentielle Phase 473, 479
exponentiellem Wachstum 469 exponentielles Wachstum 469 externe Faktoren 473
externe Regulation 474
Extinktionszähler 57
Extraktion

- Fest-Flüssig- 279

Extraktion 289
Extraktion mit überkritischem
Toluol 289
Extraktionsbatterie 283
Extraktionsmittel 279, 286

- kritische Daten 286

Extraktionsverfahren 659
Extraktionszeit 280
F
Fachgebiet

- interdisziplinäres 23

Fachhochschule 34
FAD 448
FADH2 447f.
Fähigkeiten

- kommunikative 25

Faktoren

- externe 473
fakultativ anaerob 452
Fallfilmabsorber 236
Fallfilmverdampfer 165, 170
Faultürme 614
$\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}-\mathrm{Cyclus} 586$
Fehlkorn 105
Feingut 103
Feinheit disperser Elemente 47
Feinheitsmerkmal 47
Feinrechen 601
Feinvermischen 83
Feldstörungsverfahren 59
Feret-Durchmesser 55
Fermentation
- anaerobe 673
- nasse 674

Fest-Flüssig-Trennverfahren 103
Fest-Gasförmig-Trennver-
fahren 103
Festbettadsorber 244f., 249
Festbettreaktor 364, 396,
487f., 555, 641
Festkörperbrücken 124, 127
Feststoffextraktion 258, 281
Feststoffmischer

- Bauformen 93

Feststoffmischverfahren 92
Feuchtegehalt 242
Ficksches

- 1. Gesetz 318
- 2. Gesetz 327

Filmdiffusionsgebiet 323
Filmmodell 324
Filterapparate 119
Filtermaterial 641,643
Filterzentrifugen 119
Filtration 117
Fimbrien 418
Fischtest 598
Flächenfilter 644
Flachbett-Reaktoren 396
Flagell 417
Flagellatenpilze 432
Fliehkraft-Gegenstromsichter
111
Fließbetrieb 297
Fließbett 126
Fließbettagglomeration 126
Fließbettreaktor 487
Fließgleichgewicht 476, 481

Fließorte 81
Fließzustand 77
Flotationsvorgänge 656
Fluid-Feststoff-Reaktoren 396
Fluid-Fluid-Reaktoren 395
Flüssigkeitsbrücken 64, 124
Flüssigkeitshülle 124
Flüssigkeitspumpe

- Energieeintrag 492

Flutgrenze 219 f .
Folgereaktionen 328, 331
Förderbohrungen 594
Formfaktor 48
Formwerkzeug 563
Forschungsaufgaben 24
Fotosedimentometer 62
Fraktion 49
Freistrahlreaktor 493
Frischmasse

- Bestimmung der 468

Fructose 570
Fructose-1,6-biphosphat 443
Füllkörper 158, 214, 219, 222,
235, 638
Füllkörpereinbauten 639
Füllkörperkolonne

- pulsierte 27

Füllkörperschüttung 201
Füllstoffe 563
Fumarat-Atmung 450 f .
Fungi imperfecti 57
Fungistatica 404
Fusobacterium 426

G

galvanische Verfahren 522
Gärkammern 572
Gärprozesse 443
Gärungen 453
Gärungsstoffwechsel 455
Gas-Flüssig-Extraktionsverfahren 258
Gasadsorptionsverfahren 63
Gasaufbereitungstechnik 238
Gasaustausch 497
Gasbelastungsfaktor 217, 220
Gaserfassung 662
Gasstrom-Reinigung 667
Gaswäsche 639
Gefriertrocknung 254
Gegenstrahlmühle 153
Gegenstrom 160, 265
Gegenstromextraktion 583

Gegenstromfahrweise 168,
Geißel 417
Gelatine 461
Gemische

- explosive 674

Gemische mit Siedepunktsmaximum 191
Gemische mit Siedepunktsminimum 190
Generationszeit 464, 470, 472
Generatorverfahren 487
Gentamycin 578
Gentechnik 405
Geruchsbelastung 633, 648
Geruchseinheit 647
Geruchsintensität 647
Geruchskonzentration 647
Geruchsmessung 646, 649
Geruchstoffe 633
Geruchswirkung 647
Gesamtzahl 465
Geschwindigkeitsgesetz

- 1. Ordnung 471

Geschwindigkeitsgesetz 304
Geschwindigkeitskonstante 304
Gesetz von der Erhaltung der Masse 296
Gewässergüte 599
Gewebefilter 621
Gewinnung von Kupfer 594
Gewinnung von Metallen 591
Gewinnung von Uran 594
Giftstoffe 597
Gilliland-Diagramm 208 f .
Gitterrührer 97
Glaskontaktthermometer 517
Gleichgewichtsapparaturen 184
Gleichgewichtsbeladung 247
Gleichgewichtsdiagramm 187, 191, 201
Gleichgewichtskurve im
Beladungsdiagramm 233
Gleichstrom 160
Gleichstromfahrweise 167
Glockenboden 214 ff .
Gluconsäure 574
Glucose 443, 570
Glucose als C-Quelle 582
Glucose-6-phosphat 443
Glucoseabbau 440, 449

Glycerinaldehyd-3-phosphat 444
Glykolyse 443, 570
Golgi-Apparat 420
Gram-Färbung 414
Gramicidin 578
Grenzfilm

- laminarer 319

Grobgut 103
Grobrechen 601
Grobvermischen 83
Grundgesamtheit 54
Grundoperationen 22, 44, 161
Grundwassergefährdung 594
Gruppenparameter 598
Guanin 410

H

Haemophilus influenza 426
Haftkräfte 64
Halbhartschaumstoffe 563
halbkontinuierlicher Betrieb 334
halbtrockene Verfahren 623
Halbwertszeit 307
Haldenlaugung 591, 593
Hammerbrecher 143
Hammermühle 15
Hartschaumstoffe 564
Hartzerkleinern 130
Haufenlaugung 593
Hauptelemente 459
Hauptrotte 671
Heatless-Prinzip 246
Heizdampfverbrauch 166
Heizregister 169
Heißhaltezone 509
Heißschaumverfahren 566
Henrysche Gerade 227, 232
Henryscher Absorptionskoeffizient 227
Henrysches Gesetz 229, 240, 325
Herdofenkoksadsorber 664 Herdofenkoksanlage 627 heterogen 158
heterotrophe Bakterien 609
Heterotrophie 441
High-Dust-Variante 627
Hilfsstoffe 562
Hochbioreaktor 237
Hochdruckextraktion 258,
285, 287

Hochdruckmaschinen 565 Hochdruckverfahren 564 Hochdruckwäsche 660 Hochfrequenztrocknung 254
Hochleistungsextraktor 276 Hochschule

- wissenschaftliche 34

Höherqualifizierungseffekt 30
Hohlfasermembran-Bündel Hohlfa
489
Hohlraumanteil 73
Hohlrührer 102
homogen 158
homogene Keimbildung 177
Homogenisieren 94, 99
Hordenreaktor 396
Horizontallastverhältnis 75
Horizontalstromklassierer 112
HTU-Wert 219, 221
hydraulische Verfahren 655
Hydrierung 554
Hydrocracking 551
Hydrofining 554
Hydrolyse 673
Hydrotreating 554
Hydrozyklon 112
hygroskopisch 251
hyperthermophil 463

1

ICl-Reaktor 491
ideales Zweistoffgemisch 184 Ilmenit 536 f.
Immissionsschutz 27
Immissionsüberwachung 646
Impellerrührer 96
Impfgutanzucht 581
Impfkristalle 176
impfmaterial-Anzucht 485
Impulsmarkierung 366
Indirekteinleiter 596
Industrierückstände 591
Ingenieurausbildung

- Reform der 38

Ingenieurdienstleistungen

- freiberufliche 31

Inhomogenitäten im Reaktor 524
Injektionsbohrung 594
Injektor-Mischer 102
in situ 520
In-situ-Laugung 593
In-situ-Messungen 516
n-situ-Verfahren 654
ntegralschaumstoffe 563
ntegrationsmethode 306
intermediärprodukte 572
Intermediärstoffwechsel 437,
446
nternationalisierung 38
interne Regulation 474
onenselektive Elektroden 525
socyanate 558
Isomerisierung 553, 555
sotherme nach Freundlich
239
sothermer Betrieb 389

J

lenike-Schergerät 81
Jochpilze 433

K

Kalkstein-Suspension 623
kalorischer Faktor 205 f.
Kaltschaumverfahren 566
Kanalbildung im Festbett 487
Kapillarbereich 124
Kapsel 416
Karriere

- lineare 41

Kaskade 353
Kaskadenberechnung 349
Kaskadenboden 214
Kaskadenmodell 376
Katabolismus 437f., 636
Katalysatoren 316, 562
Katalysatorgift

- Entfernung 555

Katalysatorgifte 630 f.
Katalyse

- heterogene 316, 321
- homogene 316 f .
katalytische Nachverbren-
nung 622, 629, 657
katalytische Nachverbren-
nungsanlage 629
katalytisches Cracking 550
Kennzeichnung der Trenn-
prozesse 103
Kern 409
Kernfluss 77
Kernmembran 420
Kesselzahl
- Berechnung 350

Kettenverlängerer 562
Kick-Zerkleinerungsgesetz 135
Kieselgel 243, 322
kinetisches Gebiet 323
kinetisches Konzept 271
Klären 115
Klassieren 107
Klassiersiebung 108
KIon 423
KLa-Wert 518
Koeffizienten nach Bond 136
Kohle-Öl-Anlage 666
Kohlenhydrate 570
Kohlenstoffdioxid-Elektrode 525
Koloniezahl 467
Kolonne

- gepulste 276
- gerührt 275
- statische 274

Kolonnenhöhe 217
Kommunikationstechnologie
31
Kompaktfilter 644
Kompartimente 419, 421
komplexe Nährmedien 571
Komplexierungsmittel 568
Kompost 642, 670
Kompostanlage 661
Kompostiervorgang 670
Kompostqualität 672
Kompostwerk 671
Kompressionszone 70
Kondensator 199
konjugierte Phasen 260
Konode 260
Kontaktkristallisator 181 f .
Kontakttrocknung 253
Kontaktverfahren 533
Kontamination 501, 571
kontinuierliche Kultur 476
kontinuierliche Phase 46
kontinuierliche Rektifikation
199
kontinuierliche Sterilisation
508
kontinuierlicher Betrieb 334,
336
Kontinuitätsgesetz 216
Konvektion 498
Konvektionsströmung 325
Konvektionstrocknung 253
Konzepte

- aerobe 669
- anaerobe 669

Korngröße

- mittlere 671

Kornverteilung 130
kosmetische Produkte 568
Kostenvergleich verschiedener Abluftreinigungsverfahren 634
Kraftwerksabgase

- saure 653

Kreisläufe 636
Kreislaufwirtschaft 661
Kreuzbalkenrührer 101
Kreuzstrom 160, 265
Kreuzstromfahrweise 265
Kristallisation 172, 572, 574
Kristallisationsverfahren 179
Kristallkeimbildung 179
Kristallwachstum 179
Kristallwasser 174
Kriterien zur biologischen Abluftreinigung 635
Kriterium

- 1-s- 99
- $90 \% 100$
kritische Temperatur 285
kritische Verdünnungsrate 48
kritischer Druck 285
Krustenbildner 174
Kugelmühlen 146
Kühlungskristallisation 178 ff .
Kühni-Kolonne 275
Kultur
- diskontinuierliche 469
- kontinuierliche 476
- statische 469

Kurzschlussströmung 373

L

Lactobacillus acidophilius 456
Lactobacillus-Arten 428
Lactobacillus brevis 456
Lactobacillus bulgaricus 435
Lactobacillus bulgaris 456 Lactobacillus delbrückii 456
Lactobacillus helveticus 456
Lactobacillus lactis 456
Lactobacteriaceae 456
Lactococcus lactis 456
Lactose 582
Lage des azeotropen Punkts 195
Landschaftspflege 653

Langmuir 240
Laserbeugungsspektrometer
58
Laserscanner 57
Laugung 584

- direkte 585
- indirekte 586

Laugungsflüssigkeit 591
Laugungsverfahren 591
Leaching 584
Lebendzellzahl 465
Lebensmittelindustrie 29, 568
leichter siedende Kom-
ponente 185
Leichtgut 104
Leistungsbedarf von Rührern
97
Leitkomponente 295
Leptospirosen 425
Leptotrichia 426
Lichtmikroskop 55
Lipiddoppelschicht 412 f .
lithotrophe Bakterien 609
Lithotrophie 442
Löslichkeit von Sauerstoff 497
Löslichkeit von zwei Gasen
229
Löslichkeitskurven 173f., 178, 288
Lösungskristallisation 172
Lösungsmittel 258, 278
Lösungsmittelbedarf 281
Lösungsmittelphase 259
logarithmische Normal-
verteilung 52
Low-Dust-Variante 627
Luftblasen 574
Luftschadstoffen 633
Luftstrahlsieb 61
Luftzahl 664

M

Mahlen 131
Mahlkörper 146
Mahlkörpermühlen 145
Makrokinetik 302, 318
Maschenform 109
Massenbeladungsanteile 161
Massenfluss 77
Massenkräfte 60, 65
Massenstrom 295
Master 34 f .
Materialfeuchte 642

Matrixkamera 56
McCabe-Thiele-Verfahren 205 f.
mechanische Schaumzerstörung 519
mechanische Stoffumwandlung 44
Median-Trenngrenze 104
Medianwert 51
Mehrstoffgemische 212
Mehrstufen-Impuls-Gegen-strom-Rührer 494
Mehrstufenverdampferanlage 166
Membran 406, 411
Membran-Reaktoren 488
Membranfilter 502, 512
Membranfilter-Methode 466
Membranfiltrationseinheiten 511
mesophil 462
Messelektrode 520
Messenger-RNA 411
Messgrößen

- physikalische 517

Messmethoden 517
Messort 516
Messtechnik 514
Messung der Drehzahl 518
Messung der Trübung 520
Messung des Drucks 518
Messung des Redoxpotenzials 521
Messung des Sauerstoffs 522
Messung des Schaums 519
Messungen des pH -Werts 521
Metabolisierung 597
Metabolismus 436
Metallgewinnung durch
Mikroorganismen 584 Metal|gewinnungsanlage 592 Metallionen 571
metastabiler Bereich 176
Methangärung 673
Methanococcus 430
Methanospirillum 430
Methylococcus 425
Methylomonas 425
Michaelis-Menten-Gleichung 474
Micrococcus /uteus 427 mikrobielle Laugungsverfahren 584
mikrobiologische Eigenschaften des Filtermaterials 642
Mikrokinetik 302
Mikroorganismen 400
Mikroorganismenpopulation 636, 639
Milchsäurebakterien 401
Milchsäure-Gärung 456 minderwertige Erze 584
Mindestbodenzahl 208 Mindestrücklaufverhältnis 208
Mindestsauerstoffkonzentration 574
Mindestsolvensstrom 268
Mineralisierung 597
MINT-Fächer 36
Mischagglomeration 126
Mischen

- statisches 102

Mischerbauarten 85
Mischgüte

- momentane 87

Mischkultur 504
Mischtrommel 126
Mischung 90
Mischungslücke 262
Mischungszustand 85, 87, 89
Mischverfahren 83 ff .
Mischvorgang 83
mismatch-Situation 33
Mitochondrien 406, 419 f
Mitochondrienmatrix 447
Mittel

- arithmetisches 88

Mittelhartzerkleinern 130
Mittelwert 87
mittlere Korngröße 671
Mixer-Settler-Extraktoren 274, 27
Modalwert 53
Modularisierung 38
Mohs-Härte 130
Molekularität 305
Moment
-1. statistisches 370

- 2. statisches 375

Monod-Gleichung 475, 480, 482
monodispers 46
Morphologie 423
Moving-Bed-Verfahren 551
MPN 466
Mühlen 144

Multienzymkomplex 446
Müllverbrennungsanlage
627f., 663 ff .
Murein-Sacculus 414
Mycel 408
Mycelbildung 407
Myceldecke 572
Mycelstruktur 573
Mycelwachstum 582
Mykoplasmen 427
Myxomycota 431 f .

N

Nachfällung 604
Nachrotte 671, 674
Nachverbrennung

- katalytische 630

Nachverbrennungsanlage 658
NAD(P)H 447
NAD +447
NADH 447, 453
NADP 447
Nährböden 461, 485
Nährlösung 438, 572
Nährmedien

- komplexe 571

Nährmedien 459

- synthetische 460

Nährmedien für die bakteri-
elle Laugung 590
Nährmedium für Bakterien 460
Nährmedium für Hefen 460
Nährstoffe 436, 438, 597
Nährstoffkonkurrenz 501
Nahrungskette

- menschliche 672

Nahrungsmittelkonservierung
580
Nasen, elektronische 648
Nassmahlen 131, 148
Nasssiebung 61
Nassstromklassierer 112
Naturschutz 653
Neisseria gonorrhoeae 426
Neisseria meningitidis 426
Neisseriaceae 426
Neomycin 578
Nernstscher Verteilungs-
koeffizient 260
Neukeimbildung 176 f .
Neutralisation 604
neutrophil 463

Nichtmischbarkeit 258 nichtregenerative Absorp-
tionsverfahren 624
Niederdruckmaschinen 564
Niederdruckverfahren 564
Nitrat-Ammonifikation 452
Nitrat-Atmung 450, 610
Nitrat-Nitrit-Atmung 452
Nitrifikanten 463
Nitrifikation 608 ff .
Nitrobacter 473
Nitrobacter agilis 609
Nitrosomonas 473
Nitrosomonas europaea 609
NoELL-Konversionsverfahren
667
Normalspannungen 74
Normalverteilung nach Gauss 51
Normalverteilung, logarith-
mische 52
NTU 219, 221

O

O_{2}-Bestimmung, galvanische 523
Oberfläche, spezifische 49, 53
Oberfläche, volumenspezifische 48
Oberflächenkultur, statische 485

Oberflächenreaktoren 484
Oberflächenverfahren 568, 571
Offline-Messverfahren 516
Off-site-Verfahren 654, 658
Oleum 535
Olfaktometer 648
Online-Verfahren 516
On-site-Verfahren 654, 658
Oomycota 43
Organismen, Anforderungen 483
Organotrophie 442
Orleáns-Verfahren 485
osmotischer Druck 570
Oxalacetat 447
Oxalsäure 574
Oxidationsgräben 615
Oxidationskatalysatoren 531
Oxytetracyclin 578

P
Packung 201, 214, 223, 638 Packung aus Metallgewebe 223
Packungskolonnen 218, 235 277
Paraffinen 574
parallel geschaltete Adsorber 245
Parallelbetrieb 167
Parallelreaktionen 328 f .
Parameter der Desorption 229
Parracoccus denitrificans 452
Partialdruckkurven 184, 186 Partikel 46
Partikelgröße, gewogene mittlere 53
Pelletierteller 126
Pelletiertrommel 127
Penicillin 576
Penicillium 433, 577
Penicillium-Arten 569, 571, 581
Penicillium camembertii 434
Penicillium chrysogenum 435, 581
Penicillium citrium 569
Penicillium luteum 569
Penicillium notatum 404, 576, 581
Penicillium roquefortii 434
Pentosephosphat-Weg 443 445
peritrich 417
Perkolatorlaugung 588
Permeationsverfahren 63
Persönlichkeitsentwicklung 37
Petrochemie 541
Pflanzenkläranlage, horizontal durchströmte 616
Pflanzenkläranlagen 615
Pflanzenkrankheiten, Bekämpfung 580
PFR 337
Pfropfströmungssystem 476
Phagocytose 416, 420
pharmazeutische Produkte 568
Phase 158
Phase, disperse 46, 27
Phase, exponentielle 473, 479
Phase, kontinuierliche 46, 271

Phase, stationäre 475
Phasengleichgewicht 226
Phasengrenzfläche 158
Phosphatelimination 604
Phosphorlipide 413
Phosphorverbindungen

- Elimination von 605

Phosphorylierung 443
Phosphorylierung, oxidative
414
Photonenkorrelations-
Spektroskopie 58
Photosynthesepigmente 420
Phototrophie 442
physikalische Messgrößen 517
Physiologie 423
Physisorption 225
pH-Wert 671
H-Wert-Messung 520
Pili 418
Pilze 431, 577
Planetenmühlen 149
Plansieb 109
Plasmid 407, 409
Plastide 418
Plat-Forming 553
Plattentest 467
Plattenwärmetauscher 510
Plug-Flow-Reaktor 476
polarografische Verfahren
522
Polarogramm 522
polydispers 46
Polyen-Antibiotika 578
Polyesterole 561
Polyetherole 561
Polymerisation 555
Polyole 562
Polypeptid-Antibiotika 578
Polysaccharid, extracelluläres 416
polytrich 417
Polyurethan 557
Porendiffusionsgebiet 323
Porosität 73
praktische Böden 201
Prallbrecher 143
Prallmühlen 151
Prandtlsche Grenzschicht
319
räparative Trenngrenze 104
Praxisbezug 37
Pressagglomeration 122, 127
Primärstoffwechsel 569

Primärstruktur 411
Probeanalyse von Mischungen 86
Probebehälter 649
Probenahme 54, 649
Probestecher 54
Probeteilung 54
Produkte, kosmetische 568
Produkte, pharmazeutische 568
Produktionsbereiche, automatisierte 23
Produktionsleistung 293, 300, 335, 343

- maximale 343

Produktionsreaktor 573
Produktionssiebe, Bauformen 109
Produktionssiebung 108
Produktionsverfahren 22, 293
Produktivität 480, 481
Projektionsflächen 55
Prokaryoten 405, 447
Promotion, kooperative 35
Propellerrührer 96, 494
Propionibacterium 428, 435
Propionsäure-Gärung 457
Protein 407, 411
Proteingehalt, Bestimmung 468
Protocyt 405, 407ff.
Protoplast 414
Prozessgrößen 514
prozessnachgeschaltete Umweltschutzmaßnahme 28
Pseudomonas 425, 462
Pseudomonas aeruginosa 425
Pseudomonas denitrificans 435, 610
Pseudomonas fluorescens 584
Pseudomonas putida 584
psychrophil 463
Pulver, trocken 65
Pyrolyse 666
Pyrolyseanlage 659
Pyruvat 438, 443, 446

Q

Qualitätsgrößen 514
Quasi-Echtzeitbedingungen 516

Querstromfilter 119
Quotient, respiratorischer 480

R

radiale Strömung 495 radialfördernde Rührer 96 Radialschaufelrührer 96 Raffinatkomponente 259 Raffinerieverfahren 545
Randgängigkeit 219
Raoultsches Gesetz 184, 186
Rauchgasentschwefelung 615, 623
Rauchgasentstaubung 614
Rauchgasreinigung 622, 653
Rauchgaswäsche 624
Raumzeit 300
RDC-Kolonne 275
Reaktionen

- 0. Ordnung 305, 310
- 1. Ordnung 304, 306, 310,

329, 345, 347, 356, 361, 377, 392

- 2. Ordnung 305, 307, 310,

346f., 357, 378, 392

- 3. Ordnung 310
- autokatalytische 362
- exotherme 380
- höherer Ordnung 305
- n-ter Ordnung 309
- reversible 328
- volumenkonstante 300

Reaktionsarten 328
Reaktionsführung

- adiabatische 379 f
- polytrope 379
- thermische 380

Reaktionsgeschwindigkeit 303, 327

- effektive 323
- stoffbezogene 304

Reaktionskinetik 303
Reaktionskontrolle 328
Reaktionsmasse 295
Reaktionsordnung 305
Reaktionszeit 334
Reaktor 573
Reaktoren

- diskontinuierlich betriebene 296
- Fluid-Feststoff- 396
- Fluid-Fluid- 395
- ideale 302
- kontinuierlich betriebene 297
- Reaktionen 394
- reale 364

Reaktorkenngrößen 496
Reaktorsysteme 496
Recycling 28, 113, 622
Reduktionsäquivalente 439,

$$
447,454
$$

Reduzierung von Abfällen 28
Reforming 552
Regulation, externe 474
Regulation, interne 474
Reibungsbeiwert 75
Reifekompost 672
Reingas 107
Reinigung von Prozessgasen 238
Reinkultur

- Herstellung 485

Reinkultur 403

- Klassifizierung 423

Rektifikation 225, 258, 268
Rektifiziersäule 199
relative Flüchtigkeit 187
Reservestoffe 408
Resistenzen 409
respiratorischer Quotient 480
Ressourcenschonung 28
Restfeuchte 107
Resublimieren 172
Retikulum, endoplasmatisches 420
reversible Reaktionen 328
Reynolds-Zahl 320
Rheni-Forming 553
Ribose 411
Ribosom 407, 411, 420
Rickettsien 426
Rieselbettreaktoren 555
Rieselfilm-Reaktor 487
Rieselfilmreaktor 395
RIM-Werkstoffe 564
Ringerweiterung 553
Ringschergerät 82
Ringspaltkugelmühlen 149
Rittinger-Zerkleinerungs-
gesetz 135
Robert-Verdampfer 169
Rohgas 107
Rohrbündelreaktor 396
Rohrmühlen 149
Rohrreaktor 354, 364, 375
Rohrschlaufenreaktor 493

Rohrverdampfer 165
Rohölfraktionen 543
Rollagglomeration 126
Röntgensedimentometer 62
Rostsysteme 663
Rotating Disk Contactor 275
Rotationssprühwäscher 640
Rottedeponien 672
RRSB-Verteilung 52
Rücklaufverhältnis 203, 213
Rückstandssumme 49
Rückstandssummenkurven 50
Rückstände der Abwasserreinigung 601
ruhende Ladung 54
ruhende Schüttung 54
rühren 94
Rührer, axialfördernd 96
Rührer, radialfördernd 96
Rührer, tangentialfördernd 97
Rührkessel

- diskontinuierlich 385
- kontinuierlich 381, 387

Rührkessel 335, 364, 394

- diskontinuierlich 339, 341,

356

- halbkontinuierlich 362
- kontinuierlich 337, 344, 351, 367, 369, 373
Rührkesselkaskade
- n-stufig 367, 369

Rührkesselkaskade 338, 347, 350
Rührkesselreaktor 334
Rührorgan, Energieeintrag 494
Rührreaktor 574, 581
Rührvorgänge 44
Rührwerkskugelmühle 146, 149
Rührzellenextraktor 275
Rundbrecher 141
Rüstzeit 335
Rutil 537, 539
Rutil, synthetischer 537
Rutilpigment 539

S

Saccharomyces cerevisiae 433 f., 443, 455
Saccharomycopsis lipolytica 434, 569

Saccharose 570
Salmonella 418, 426
Sammelprobe 55
Sandfänge 603
Sättigungsbeladung 240
Satz-Kultur 469
Satzbetrieb 296, 334, 344
Sauerstoffbedarf 67
Sauerstoffbedarf, biologischer 598
Sauerstoffbedarf, chemischer 598
Sauerstofftransferrate 499
Sauerstofftransport 497, 500
Sauerstoffzufuhr 670
Säulenlaugung 590
Säurebildung 673
Sauter-Durchmesser 54
Scale-up 272, 292
Schadstoff 635
Schadstoffabbau 639
Schadstoffabsorption 639
Schaumbildung 519
Schaumdetektoren 519
Schaummessung 519
Schaumstabilisatoren 562
Schaumzerstörung, mechanische 519
Scheibel-Kolonne 275
Scheibenrührer 96, 100, 495
Scheren 153
Schimmelpilze 568
Schlagkreuzmühle 151
Schlagstiftmühle 151
Schlammanfall 613
Schlammbehandlung 613
Schlammflocken 640
Schlankheitsgrad 492
Schlaufenreaktor 362, 490
Schleim 416
Schlieren-Methode 99
Schlitzboden 214
Schlüsselkomponente 297
Schlüsselqualifikationen 38
Schlüsseltechnologie 29
Schlüsseltrends 40
Schmelze 172
Schmidt-Zahl 320
Schneidmühlen 153
Schnittpunktsgerade 205
Schnittpunktsgeraden 204
Schockkühlung 667
Schrägblattrührer 96

Schraubenrührer 96
Schreddern 113
Schubspannungen 75
Schulunterricht, Voraus-
setzungen 38
Schwefel-Atmung 451
Schwefeldioxid, Herstellung 532
Schwefelentfernung 555
Schwefelvorkommen 532
Schwelbrennverfahren von
Siemens 666 f.
Schweltrommel 666
schwer siedende Komponente 185
Schwergut 104
Schwerkraft-Gegenstromsichter 111
Schwerkraftfilter 119
Schwerkraftklassierung 112
Schwermetallanreicherung im Kompost 672
Schwingbodenkolonne 276
Schwingmühle 146, 149
Schwingungsfrequenz 109
Schürwirkung 663
Schüttdichte 73
Schüttelkultur 581
Schüttgutparameter 81
Schüttgutspeicher 77
Schüttgüter 73
Schütthöhe der Füllkörper 222
Schüttung 638
Schüttung, ruhende 54
CR-Katalysator 626
SCR-Reaktor 627
SCR-Technik 626
Screening 576
Sedimentation 115
Sedimentation von Einzelkörnern 70
Sedimentation von Körnerkollektiven 69
Sedimentationsanalyse 62
Sedimentationsbecken 613
Sedimentationswaage 62
Selbstreinigungsprozess durch Mikroorganismen 633
selektive Antibiotika 580
selektive katalytische Reduktion 622
Selektivität 299
Semibatch-Reaktor 362

Sensorik 646
Separatoren 574
Sherwood-Zahl 320
Sichtermühle 111
Sickerwässer 662
Siebboden 214, 274
Siebfilter 511
Siebgütegrad 106
Siebhilfen 61
Siebkastenschwinger 109
Siebklassierung 107, 127
Siebneigung 109
Siebroste 109
Siebtrommelmühle 146
Siebtrommelreaktoren 614
Siede- und Gleichgewichtsdiagramm 189
Siedepunktserhöhung 163
Silikagel 461
Silo 75
simultane Nitrifikation/Denitrifikation 612
simultane Nitrifikation/Denitrifikation, Schema 612
Sinkleistung 100
Soft Skills 38
Solvensphase 259
Solventextraktion 258, 279
Sortieren 113
Sortierprozess 103 f .
Sortierverfahren 114
Spannungsarten 74 spezifische Oberfläche 53 spezifischer Druckverlust $219 f$.
Sphaerotilus natans 429
Sphärizität 49
Spiralstrahlmühle 152
Spiralwindsichter 111
Spiralwärmetauscher 510
Spirilum volutans 425
Spirochaeten 424
Sporen 502, 572 f .
Sprungmarkierung 371
Sprödbruch 132
Sprühtrockner 256
Sprühturm 396
Spurenelemente 438, 459
Stabilität 524
Standardabweichung 88
Standardbioreaktor 494
Ständerpilze 433
Staphylococcus aureus 404, 427

Staphylococcus epidermis 427
Starterkultur 501
stationäre Phase 475, 479
stationärer Zustand 336 statische Oberflächenkultur 485
statische Verfahren 671 statischer Turbulenzmischer 102
statisches Mischen 102
Staubabscheidung 622
Staugrenze 220
Steigung der Löslichkeits-
kurve 172, 178
Steilheit 521
Stellgrößen 515
Stempelpresse 128
Sterilisation 501, 509
Sterilisation durch chemische
Methoden 511
Sterilisation durch Dampf-
injektion 509
Sterilisation durch Filter 511
Sterilisation nach dem Wär-
metauscherprinzip 510
Sterilisation von Gasen 512
Sterilisationsbedingungen 509
Sterilisationseffekt 506
Sterilisationsverfahren,
kontinuierliche 509
Sterilitätskriterium 506
Steriltechnik 501
Stickoxide 625
Stickstoffverbindungen,
Elimination von 607
Stoffaustausch 199
Stoffaustauschverfahren 656, 659
Stoffbilanz 301, 390
Stoffbilanzgleichung 339
Stoffdurchgang 325
Stoffdurchgangskoeffizient 326
Stoffmengenanteil 160
Stoffmengenstrom 295
Stofftransport, konvektiver 319
Stoffumwandlung, mechanische 44
Stoffvereinigungsprozesse 44
Stoffwechsel 436
Stoffwechselaktivität 637
Stoffwechselleistung 400
Stoffwechselprodukt 468, 576

Stoffübergangskoeffizient 273,
319, 499
Stoffübergangskontrolle 327
Störstoffe 597
Stoßmarkierung 371
Strahldüsenreaktor 493
Strahldüsenwäscher 236
Strahlmühlen 152
Strahlschlaufenreaktor 492
Strahlungstrocknung 254
Strahlwäscher 396
Streptococcus pneumoniae
456
Streptomyces 430
Streptomycin 578
Streulichtmessungen 468
Streulichtzähler 57
Streuung 88
Strippung 656
Strömung, axiale 495
Strömung, radiale 495
Strömungsrohr 337

- ideales $337,354,367,369$, 390
Strom-Spannungs-Diagramm 522
Strukturwandel 25
Studienabschluss 34
Studiendauer, Verkürzung der
38
Studienform 34
Studienstrukturreform 38
Stufenkonzept 271
Sturzmühle 146, 148
Submers-Reaktoren 484, 489
Submersverfahren 568, 581
Substanzen, geruchsintensive
635
Substratlimitierung 479
Substratphosphorylierung 445
Sulfat-Atmung 450f., 453
Sulfatverfahren 537
Sulfatverfahren, Fließschema 538
Sulfolobus 584
Summenparameter 598
Suspendierdrehzahl 99
Suspendieren 94, 99
Suspensionslaugung 589
Symbole
Synthese von ATP 445
Systeme, disperse 46

T

T. ferrooxidans 587,590
T. thiooxidans 587,590
tangentialfördernde Rührer 97
Tätigkeit in Forschung und Lehre 24
Tauchstrah|reaktor 492
Taxonomie 421
technische Anleitung 669
Teilchenkollektiv 46
Teilungsrate 469
Temperatur 517
Temperatur, kritische 285
Temperatur-Zeit-Abhängigkeit
502
Temperatur-Zeit-Diagramm 505
Temperaturabhängigkeit des Wachstums 461
Tetracycline 578
theoretische Bodenzahl 208
theoretische Trennstufen 265
theoretischer Boden 159, 199
thermische Behandlung 512
thermische Nachverbrennung 622, 657
Tiefenfilter 512
Trägerkatalysatoren 32
Trichoderma viride 569
Triisocyanate 558
Trinkwassergewinnung 653
tRNA 411
Trocken-Additiv-Verfahren 623
Trockenmahlen 131
Trockenmasse-Bestimmung 468
Trockensubstanzgehalt 614
Trocknen von Feststoffen 251
Trocknen von Gasströmen 251
Trocknen von hygroskopischen und nichthygroskopischen Feststoffen 252
Trocknerbauarten 255
Trocknung, allgemein 251
Trocknung von Druckluft 238,
246
Trocknungsabschnitt 251 f .
Trocknungsanlagen 614
Trocknungsarten 253
Trocknungsgeschwindigkeit 253
Trombe 95

Trommelmühlen 148
Trommeltrockner 255
Tropfen 46
Tropfkörper 487
Tropfkörperrasen 487
Tropfkörperreaktor 638
Tropfkörperverfahren 638
Trübung 466
Trübungsmessung 468, 520
TS-Gehalt 614
TU9 39
Tunnelboden 214
Turbidostat 476
Turmfilter 644

U
Überdruckkolonnen 217
Überdüngung 653
Übergangskomponente 258, 279
Übergangszustand, Theorie 313
Überkorn 105
überkritisch 285
Uberlöslichkeitskurve 176
Umsatz 295, 342

- mittlerer 37

Umsatzgrad 295
Umwandlung von Schadstoffen 635
Umweltbelastung 28
Umweltschutz

- integrierter 29
- produktionsintegrierter 28

Umweltschutzmaßnahmen, prozessnachgeschaltete 28
Umwelttechnik, integrierte 661
Umweltverträglichkeitsprüfung 655
unipolar 417
Unit Operation 22
Unterkorn 105
Unternehmensberater 31
Uracil 411

V
Vakuole 418
Vakuumfilter 119
Vakuumkristallisation 178f.,
181
Vakuumrektifikation 219

Van-der-Waals-Kräfte 64, 123
Vanadiumpentoxidkatalysator 532
Varianz 88
VDI 39
Veillonella alcalescens 426
Ventilboden 214
Venturi-Wäscher 640
Verbrennungsanlage 659
Verdampfer 199
Verdampferbauarten 169
Verdampferleistung 165
Verdampferschaltung 166
Verdampfertypen 165
Verdampfung 163, 181
Verdampfungsenthalpie 210
Verdampfungskristal lisation 178 f., 183
Verdichtung 666
Verdopplungszeit 464, 481
Verdrängungsverfahren 281
Verdünnungsrate 47

- kritische 481

Verdünnungsreihe 465
Veredungsprozesse 545
Verfahren

- anaerobe 672
- biologische 658
- Bodenverdichtungs- 655
- dynamische 67
- galvanische 522
- halbtrockene 623
- hydraulische 655
- nasse 623
- polarografische 522
- statische 671

Verfestigungsspannung 80
Vergasung fester Produkte 666
Vergleich der Reaktorsysteme 496
Verkrustungsgefahr 218
Vermehrung 437
Verstärkungsgerade 203, 208, 212, 268
Verstärkungssäule 199
Verteilungsdichte 49
Verteilungsdichtekurve 49
Verteilungsfunktion

- normierte 366

Verteilungsfunktion 87
Verteilungskoeffizient 279
vertriebsorientierte Ingenieure 26

Verursacherprinzip 654
Verweilzeit

- mittlere 370
- relative 367

Verweilzeit 299
Verweilzeitsummenfunktion
369
Verweilzeitverhalten 364

- realer Reaktoren 373

Verweilzeitverteilung 365, 368
Visbreaking 549
Vollraumreaktor 396
vollständige Entmischung 90
Volumenfaktor 300
volumenspezifische Oberfläche 48
Volumenstrom 295
Vorfällung 604
Vorklärbecken 603
Vorklärschlamm 603
Vorkultur 473
Vorrotte 671
Vorschubroste 663

W

Wachstum

- exponentielles 469, 47

Wachstum 437
Wachstumsbedingungen 459, 571
Wachstumsbestimmung 464
Wachstumsertrag 453
Wachstumsfaktoren 459
Wachstumsgeschwindigkeit 461, 464
Wachstumsgeschwindigkeit der Kristalle 176
Wachstumskurve 472
Wachstumsphasen 472
Wachstumspotenzial 31
Walzenbrecher 142
Walzenmühlen 150
Walzenpresse 128
Wälzmühlen 144
Wanderschichtadsorber 250
Wandreibungswinkel 77
Wärmeabfuhrgerade 381 f

Wärmeaustausch 95

 Wärmebedarf einer Rektifiziersäule 209 Wärmebilanz 389Wärmedurchgangskoeffizient 165, 169
Wärmedämmung 557, 564
Wärmeerzeugungskurve 380 ff .
Wärmetauscherprinzip 511 Wärmetönung 379
Wasserdampfdestillation 197f
Wassergehalt 670
Wasserhaushalts

- Gesetz zur Ordnung des 596
Weichschaumstoffe 563
Weichzerkleinern 130
Weinherstellung 401
Wellmann-Lord-Verfahren 624
Wendelrührer 96
Wetterstabilität 540
Widerstandsbeiwert 67
Widerstandsthermometer 517
Windsichten 110
Wirbelschicht 70
Wirbelschichtadsorber 250
Wirbelschichtreaktoren 396, 487
Wirbelschichtverfahren 551
Wirbelstufenadsorber 250
Wirkung auf die Umwelt 597
Wirkungsmechanismen 579
Wirkungsort 579
Wirkungsspektrum von Anti-
biotika 579
Wurfprüfsieb 60
Wurfsieb 109

Y
Yarrowia lipolytica 433

Z

Zähbruch 133
Zählkammer-Verfahren 465
Zehrstoffe 597

Zeit-Temperatur-Diagramm
509
Zelle

- prokaryotische 405, 407

Zellen

- immobilisierte 574

Zellkonzentration 476
Zellstoffwechsel 437
Zellteilung 469
Zellwand 406, 414 ff.
Zellwandaufbau 415
Zellwandstruktur 414
Zentrifugalextraktoren 272,
274
Zentrifugalklassierer 112
Zentrifugalpumpen 601
Zeolithe 241, 243, 322
Zerkleinern 130 f .
Zerkleinerungsarbeit 137
Zerkleinerungsgesetze 134 f .
Zerkleinerungsmaschinen 137, 139
Zerstäubungstrockner 256 f.
Zeta-Potenzial 66
Zisternen 419
Zonen-Sedimentation 70
Zufallsmischung 90
Zugspannungen 74
Zusammenarbeit

- interdisziplinäre 37

Zusammenstoß

- unwirksamer 312
- wirksamer 312

Zusatzstoffe 562
Zustand

- überkritischer 285

Zustandsgrößen 515
Zwangsumlaufverdampfer 165
Zweifilmtheorie 159, 324, 498
Zweiteilung 464
Zygomycetes 431
Zykluszeit 335

