Vorwort zur 4. Auflage

Knapp zehn Jahre nach Erscheinen der 3. Auflage ist es sinnvoll, eine vollständig überarbeitete und erweiterte Version des Buches vorzulegen. Das liegt vor allem auch daran, dass in dieser Zeit ein Generationenwechsel in der Leitung der an der Manuskriptgestaltung beteiligten Institutionen stattgefunden hat, der sich auch im Autorenteam widerspiegelt:

Hinzu gekommen sind die Herren T. Ortmaier (Institut für Mechatronische Systeme), L. Rissing (Institut für Mikroproduktionstechnik) und A. Albert (Vertretungsprofessur am Institut für Regelungstechnik 2011-13, aktuell Geschäftsführer der Bosch Start-up GmbH).

Als Co-Autoren haben sie neue Ideen und Inhalte eingebracht, die in der 4. Auflage ihren Niederschlag finden. Unbedingt in diesem Zusammenhang zu erwähnen ist das Mechatronik-Zentrum Hannover (MZH) – ein Zusammenschluss von Instituten aus der Elektrotechnik/Elektronik, der Informationstechnik/Informatik und dem Maschinenbau. Seine koordinierende Rolle in Lehre und Forschung hat wesentlich zur Neugestaltung des Buches beigetragen.

Das Grundkonzept des Buches wurde beibehalten, nämlich die Darstellung der Grundlagen und die damit verbundene modellgestützte Beschreibung mechatronischer Systeme. Dagegen beinhaltet die vorliegende Neuauflage deutliche inhaltliche Erweiterungen bis hin zur Ergänzung und völligen Neugestaltung ausgewählter Kapitel.

Kapitel	Veränderungen	verantwortlich
Einleitung (Kapitel 1)	Die Einführung fand bis auf kleinere Anpassungen unverändert Eingang in die vierte Auflage.	B. Heimann
Aktoren (Kapitel 2)	Dieses Kapitel konnte aufgrund seines langfristig gültigen Grundlagencharakters bis auf einige Ergänzungen weitestgehend erhalten werden. Es stammte ursprünglich von Prof. Karl Popp, der wertvolle Beiträge zur Mechatronik beisteuerte, aber bedauerlicherweise 2005 verstarb.	T. Ortmaier
Sensoren (Kapitel 3)	Die Erweiterungen des ursprünglich von Prof. ULRICH SCHMUCKER verfassten Kapitels tragen insbesondere dem rasanten Fortschritt in der Sensortechnologie Rechnung. Einer der neuen Schwerpunkte ist die Weg- und Winkelmessung mit photoelektrischen Messgeräten.	L. Rissing
Signal- verarbeitung (Kapitel 4)	Neben vielen inhaltlichen Vertiefungen, z.B. bei den stochastischen Signaleigenschaften, finden nun insbesondere auch Filtertechnologien und optimale Filterung Berücksichtigung und erfahren eine ausführliche Behandlung.	A. Albert
Prozessdaten- verarbeitung (Kapitel 5)	Die Ausführungen folgen in weiten Teilen den früheren Auflagen und tragen im Kern die "Denke" der Echtzeit-Schule des geschätzten Prof. i.R. WILFRIED GERTH. Erweiterungen wurden z. B. für die Taskeinplanung vorgenommen.	A. Albert
Mehrkörper- systeme (Kapitel 6)	Dieses Kapitel wurde redaktionell überarbeitet und inhaltlich gestrafft.	B. Heimann

Kapitel	Veränderungen	verantwortlich
System- beschreibung (Kapitel 7)	Dieses Kapitel wurde neu aufgenommen, um eine zusammenhängende Darstellung der Modellbeschreibung mechatronischer Systeme zu ermöglichen. Zusätzlich enthält es Ausführungen zur System- und Parameteridentifikation und zu deren Aspekten in der praktischen Umsetzung.	A. Albert, T. Ortmaier
Regelung (Kapitel 8)	Es ist völlig neu gestaltet und enthält fortgeschrittene metho- dische Ansätze und Erweiterungen. In diesem Zusammen- hang sind die Beiträge zur optimalen und robusten Regelung und vor allem zum Entwurf und der Implementierung digita- ler Regelungen zu nennen.	A. Albert

Vollständig erneuert wurde auch das Kapitel 9 "Beispiele mechatronischer Systeme". Es verdeutlicht die Praxisrelevanz der vorgestellten Verfahren. Sechs Beiträge aus der Industrie wurden zu den nachfolgenden Themen erstellt und sind online auf der Homepage zum Buch verfügbar unter http://www.imes.uni-hannover.de/Mechatronik-Buch.html.

Automatische Reglerparametrierung eines Hubwerks M. Sc. D. Beckmann, Dr. J. Immel Schwingungsdämpfung im Kfz-Antriebsstrang Dr.-Ing. L. Quernheim, Dr.-Ing. S. Zemke Zustandsregelung zeitvarianter Systeme am Beispiel einer Drosselklappe Prof. Dr.-Ing. M. Grotjahn, M. Eng. B. Luck Modellbasierte Regelung eines Deltaroboters Dr.-Ing. J. Kühn, Dipl.-Ing. J. Öltjen Bildbasierte Regelung bei einer mobilen Manipulationsaufgabe M. Eng. (FH) A. Michaels, Prof. Dr.-Ing. A. Albert Inertiale Stabilisierung einer Lastkarre mit Momentenkreiseln Prof. Dr.-Ing. A. Albert, B. Eng. O. Breuning, Dipl.-Ing. (FH) S. Petereit, Dr.-Ing. T. Lilge

Unser herzlicher Dank gilt den Autoren für ihr Engagement und die anschauliche Beschreibung dieser interessanten Aspekte mechatronischer Systeme.

Herrn Prof. **Bodo Heimann** sowie seinen Co-Autoren der ersten Auflage, Prof. **Wilfried Gerth** und Prof. **Karl Popp** sei auf diesem Wege ganz besonders gedankt, einerseits für Ihren unerschöpflichen Einsatz für die Mechatronik und andererseits für die Ehre, das "Erbe" dieses Buches fortführen zu dürfen.

In diesem Zusammenhang möchten wir uns auch bei unseren Mitarbeitern bedanken, die einzelne Abschnitte technisch umgesetzt haben. Das betrifft vor allem die Herren Dipl.-Ing. Daniel Ramirez und Dipl.-Ing. Johannes Gaa. Des Weiteren dürfen wir auch unsere Studenten nicht unerwähnt lassen – sie gaben uns in den Vorlesungen, auf denen Teile des Buches basieren, zahlreiche Hinweise und Vorschläge zur didaktischen Außbereitung der Inhalte.

Insbesondere die Veranstaltungen "Mechatronische Systeme" (T. Ortmaier & L. Rissing), "Robotik I+II" (T. Ortmaier), sowie Vorlesungen zur Regelungstheorie, nämlich "Identifikation & Filterung", "Mathematische Optimierungsmethoden" und "Erweiterte Regelungsverfahren" (alle A. Albert), fanden Eingang in die inhaltliche Ausgestaltung des Buches.

Frau Franziska Jacob vom Fachbuchverlag Leipzig hat so manche Terminverschiebung "schlucken" müssen. Ihr sei ebenfalls für das Verständnis und die gute Zusammenarbeit gedankt.

Hannover, Oktober 2015

B. Heimann, A. Albert, T. Ortmaier, L. Rissing

Inhalt

1	Ein	nleitung und Grundbegriffe	13
	1.1		
	1.2	Prozessanalyse mechatronischer Systeme	16
	1.3		21
	1.4	Entwurf mechatronischer Systeme	24
	1.5	Gliederung des Buches	27
2	Ak	toren	29
	2.1	Aufbau und Wirkungsweise der Aktoren	30
	2.2	Aufbau und Wirkprinzipien elektromagnetischer Aktoren	34
		2.2.1 Grundlagen elektrodynamischer Wandler	35
		2.2.2 Bauformen elektrodynamischer Wandler	39
		2.2.3 Grundlagen elektromagnetischer Wandler	43
		2.2.4 Bauformen elektromagentischer Wandler	46
		2.2.5 Ausführungen und Kenndaten elektromagnetischer Aktoren	48
	2.3	Fluidische Aktoren	51
		2.3.1 Gegenüberstellung von hydraulischen und pneumatischen Aktoren	54
		2.3.2 Grundlagen hydraulischer Wandler	55
		2.3.3 Ausführungsformen und Kenndaten hydraulischer Aktoren	59
	2.4	Neuartige Aktoren	62
		2.4.1 Grundlagen piezoelektrischer Wandler	62
		2.4.2 Ausführungsformen und Kenndaten piezoelektrischer Aktoren	67
	2.5	Vergleich ausgewählter Aktoren	68
3	Sei	nsoren	71
	3.1		
	3.2	Sensoren zur Messung von Dehnung, Kraft, Drehmoment und Druck	80
		3.2.1 Sensoren zur Messung von Dehnungen	80
		o o	84
		3.2.3 Weitere Sensoren zur Kraft- und Druckmessung	86
	3.3	Sensoren zur Messung von Weg- und Winkelgrößen	91
		3.3.1 Potentiometrische Verfahren	91
		3.3.2 Photoelektrische Messgeräte	93
		3.3.3 Längen- und Winkelmessung durch Nutzung magnetischer Prinzipien 1	
		3.3.4 Optische Triangulation	
	3.4	Geschwindigkeits- und Winkelgeschwindigkeitssensoren	
		3.4.1 Tachogeneratoren	
		3.4.2 Drehratensensoren	117

			Laservibrometer	
	3.5	Besch	nleunigungs- und Winkelbeschleunigungssensoren	. 119
			Beschleunigungssysteme basierend auf dem Feder-Masse-Prinzip	
		3.5.2	FERRARIS-Sensor	. 123
		3.5.3	Beschleunigungssensor mit magnetischer Wandlung	. 123
		3.5.4	Weitere Beschleunigungssensorprinzipien	. 124
	3.6		oren zur Messung von Temperatur und Strömung	
		3.6.1	Thermistoren	. 125
		3.6.2	Thermoelemente	. 128
		3.6.3	Sensoren zur Strömungsmessung: Hitzdrahtanemometer	. 129
	3.7		lick auf weitere Sensoren	
4	Sic	ınalve	erarbeitung	137
	4.1		ellung von Signalen	
	4.1	4.1.1		
			Verteilungs- und Verteilungsdichtefunktion	
			Signalkennwerte und Signalkennfunktionen	
			Formfiltersynthese	
			Überlagerung von Signalen	
			Zeitdiskrete Signale, periodische Abtastung	
			Näherungsformeln und Rechenvorschriften	
	4.2		technologien	
			Filter zur Signalverarbeitung	
			Filter zur Erzeugung zeitlicher Ableitungen	
			Optimale Filterung: KALMAN-Filter	
		4.2.4	Erweiterungen des Kalman-Filters	. 179
5	Pro	7655	datenverarbeitung	185
U	5.1		ffe der Echtzeitdatenverarbeitung	
	5.2	-	nisbehandlung	
	5.3		tasking	
	5.5		Prozesszustände	
			Task-Einplanung und Schedulingstrategien	
			Synchronisation von Prozessen	
			Spezielle Hardware-Architekturen	
	5.4		reitkonforme Netzwerke	
	5.5	Bewe	rtung von Echtzeitsystemen	. 211
6	Mo	dellh	ildung von Mehrkörpersystemen	215
·	6.1		natik von Mehrkörpersystemen	
	0.1		Koordinatensysteme und Koordinatentransformationen	
			Beispiele für Rotationsmatrizen (Drehmatrizen)	
			Homogene Koordinaten und homogene Transformationen	
			Mechanische Ersatzsysteme mit Baumstruktur	
			•	
			Direkte und inverse Kinematik	
		6.1.6	Differentielle Kinematik und JACOBI-Matrix	. 234

			0 26110	
	6.2		ik von Mehrkörpersystemen	
			Grundgleichungen für den starren Körper	
			NEWTON-EULER-Methode	
		6.2.3	LAGRANGE'sche Methode	. 247
7	Svs	stemb	peschreibung	253
•	7.1		re, zeitinvariante Systeme	
			Klemmenmodell	
			Zustandsraumdarstellung	
			Stabilitätsbegriff	
			Stabilitätskriterien – Systemmatrix	
			Stabilitätskriterien – Übertragungsfunktion	
	7.2		llvereinfachung und -reduktion	
			Approximation	
			Linearisierung	
			Ordnungsreduktion	
	7.3		neter- und Systemidentifikation	
	1.0		Einführung in Schätzprobleme	
			Prozess zur Identifikation	
			Identifikation parametrischer, linearer, zeitdiskreter Systeme	
	7.4		te der Identifikation in der Praxis	
			Datenvorverarbeitung	
			Bestimmung der Modellordnung	
			Identifizierbarkeit und Anregung	
			Identifikation im geschlossenen Regelkreis.	
			Identifikation kontinuierlicher Systeme	
			Parameteridentifikation mechatronischer Systeme	
	_			
8	Re	_	g	
	8.1		urfsziele und Grundlagen	
			Bewertungskriterien	
			Empfindlichkeitsfunktionen und Entwurfslimitierungen	
	8.2		sche Regelung linearer Systeme	
			PID-Regler	
			Auslegungsverfahren	
	8.3		ndsregelung	
			Einführung in die Zustandsregelung	
			Beobachter und beobachtergestützte Regelung	
	8.4		nale und robuste Regelung	
			Optimale Regelung mit quadratischem Gütemaß	
			Robuste Regelung (\mathcal{H}_2 -, \mathcal{H}_∞ -Regelung)	
	8.5		ıle Regelung (Abtastregelung)	
			Zeitdiskrete Systembeschreibung	
		8.5.2	Entwurf und Implementierung digitaler Regelungen	. 382
	8.6	Auchl	ick: Weitere Regelungsverfahren	396

9	Bei	spiele mechatronischer Systeme	399
Α	Ма	thematische Grundlagen	403
		Integraltransformationen	
		A.1.1 LAPLACE-Transformation	403
		A.1.2 FOURIER-Transformation	404
		A.1.3 \mathcal{Z} -Transformation	406
		A.1.4 Korrespondenztabellen und deren Anwendung	407
	A.2	Matrizenrechnung	409
		A.2.1 Begriffe und einfache Rechenregeln	409
		A.2.2 Eigenwerte, Eigenvektoren	
		A.2.3 Ähnlichkeitstransformation (Hauptachsentransformation)	411
		A.2.4 Normen	412
		A.2.5 Lineare Gleichungssysteme und Singulärwertzerlegung	414
	A.3	Lineare, zeitinvariante dynamische Systeme	416
For	mel	zeichen und Abkürzungen	419
Lite	erati	ır	427
Ind	ex		437