Inhalt

Voi	rwort	zur 2. Auflage	V				
Vor	wort z	ur 1. Auflage	VI				
Zus	satzm	aterial VII					
Die	Auto	ren	IX				
Der	Herau	ısgeber	IX				
		rfasser	X				
1	Finle	eitung	1				
			_				
1.1		nisch, wirtschaftliche Bedeutung der Extruder	1				
	1.1.1 1.1.2	Extrudertypen und Bezeichnungen	2				
	1.1.2	Wirtschaftliche Kernfunktionen eines Extruders in der					
	1.1.5	Kunststoffindustrie	3				
	1.1.4	Extrudertypen und Vorteile von dicht kämmenden	5				
	1.1. 1	Gleichdrallschnecken	5				
	1.1.5	Erste dicht kämmende Gleichdrallschnecken	6				
	1.1.6	Details zu Doppelschnecken	9				
	1.1.7	Zielsetzung des Buches	10				
	1.1.8	Zusammenfassung	11				
	1.1.9	Ausblick	11				
1.2	Histo	rische Entwicklung der Gleichdrall-Doppelschnecken	12				
	1.2.1	Vorwort und Würdigung von Bayer-Forschern	12				
	1.2.2	Einleitung von Martin Ullrich	18				
	1.2.3	Frühe Entwicklungen	18				
		1.2.3.1 Basisgeometrie	20				
		1.2.3.2 Grundlegende Patente	23				
		1.2.3.3 Pionierzeit	31				
		1.2.3.4 Maschinenentwicklung	31				

		1.2.3.5 Ein	nsatz in Chemieprozessen
		1.2.3.6 Liz	enzvergabe
		1.2.3.7 Wi	irdigung für R. Erdmenger
			ue Hochviskostechnik mit Gleichdrallschnecken
		1.2.3.9 Vie	elfältige Hochviskosprozesse
	1.2.4		ntwicklungen der Bayer-Hochviskostechnik
		_	rtiefte Kinematik, Profilgeometrien
		1.2.4.2 Spi	ielstrategien
		1.2.4.3 En	twicklungen nach der Lizenzierung
		1.2.4.4 Ak	tivitäten nach Ablauf der Hauptpatente
1.3	Comp	oundieren (Gesamtübersicht: Aufgaben und Anwendungsbeispiele,
	_		
	1.3.1		and Anforderungen an die Compoundierung
	1.3.2	0	and Auslegung der Verfahrenszonen eines
		_	ierextruders
			nzugszone
			stifizierzone
		1.3.2.3 Sch	nmelzeförderzone
		1.3.2.4 Dis	stributive Mischzone
		1.3.2.5 Dis	spersive Mischzone
		1.3.2.6 En	tgasungszone
		1.3.2.7 Dr	uckaufbauzone
	1.3.3	Verfahrens	stechnische Kenngrößen
		1.3.3.1 Spe	ezifischer Energieeintrag
		1.3.3.2 Ve	rweilzeitverhalten
	1.3.4	Verfahrens	sbeispiele
		1.3.4.1 Ein	narbeitung von Glasfasern
		1.3.4.2 Ein	narbeiten von Füllstoffen
		1.3.4.3 He	rstellung von Masterbatches
		1.3.4.4 Ein	nfärben
1.4	Proze	ssverständn	is – Übersicht und Bewertung von Experimenten
	und l	Modellen	
	1.4.1	Einleitung	
	1.4.2	Einteilung	von Modellen und Experimenten
	1.4.3	Feststoffe .	
	1.4.4	Hochviskos	se Flüssigkeiten
		1.4.4.1 Ein	ndimensionale Modelle
		1.4.4.2 Dre	eidimensionale Modelle
	1.4.5	Zusammen	ıfassung
	1.4.6	Ausblick u	nd Anregungen
		1.4.6.1 Ext	truderkonfigurationsprogramm

		1.4.6.2	Modellweiterentwicklungen	97
		1.4.6.3	Neue Modellanwendungen – online	98
		1.4.6.4	Verfahrenstechnische Charakterisierung von	
			Schneckenelementen durch Kennzahlen	99
1.5	Förde	r- und L	eistungsparameter von üblichen Förderelementen	101
1.6	Häufi	g verwe	ndete Formelzeichen	103
2	Basis	sgeome	etrien und Schneckenelemente	107
2.1	Basis	geometr	ie der Gleichläufer:	
	Förde	r- und K	Inetelemente einschließlich Spielstrategien	107
	2.1.1	Einleit	ung	107
	2.1.2	Das exa	akt abschabende Profil aus Kreisbögen	108
	2.1.3	Geome	trische Konstruktion von dicht kämmenden Profilen	110
	2.1.4	Geome	triegrößen von Gewindeelementen mit Spielen	112
	2.1.5	_	ang zwischen verschiedenen Gangzahlen	117
	2.1.6		nung eines Schneckenprofils zur Fertigung nach der	
			chnitt-Äquidistante	117
	2.1.7		Querschnittsfläche	121
	2.1.8		iche von Gehäuse und Förderelementen	122
	2.1.9		emente	123
	2.1.10	Neue E	ntwicklungen bei Schneckengeometrien	126
2.2	Schne	eckenele	emente und deren Einsatz	127
	2.2.1	Aufbau	von Schneckenelementen	128
	2.2.2	Kombii	nieren von Schneckenelementen	133
	2.2.3	Schnec	kenelemente und ihre Wirkungsweise	136
		2.2.3.1	Förderelemente	136
		2.2.3.2	Knetelemente	142
			Abstauelemente	146
		2.2.3.4	Mischelemente	148
		2.2.3.5	Sonderelemente	152
2.3	Übers	sicht pat	entierter Schneckenelemente	160
	2.3.1	WO 200	09152910, EP 2291277, US 20110110183	162
	2.3.2	WO 201	11039016, EP 2483051, US 20120320702	163
	2.3.3		11069896, EP 2509765, US 20120281001	164
	2.3.4		313154, US 2670188	165
	2.3.5		47967, EP 1121238, WO 2000020188	166
	2.3.6		8671	167
	2.3.7		07145, EP 1476290, US 20050152214	167
	2.3.8		40109, US 2814472	168
	2.3.9	US 5713	3209	168

2.3.10 US 3717330, DE 2128468	. 169
2.3.11 DE 4118530, EP 516936, US 5338112	. 170
2.3.12 US 4131371	. 171
2.3.13 DE 03412258, US 4824256	. 171
2.3.14 DE 1180718, US 3254367	. 172
2.3.15 US 3900187	. 173
2.3.16 WO 2009153003, EP 2303544, US 20110112255	. 174
2.3.17 WO 2009152974, EP 2291279, US 20110180949	. 175
2.3.18 US 3216706	
2.3.19 WO 2009152968, EP 2303531, US 20110158039	. 177
2.3.20 WO 2013045623, EP 2760658	
2.3.21 WO 2009152973, EP 2291270, US 20110141843	
2.3.22 WO 2009153002, EP 2307182, US 20110096617	
2.3.23 EP 0002131, JP 54072265, US 4300839	. 181
2.3.24 DE 19718292, EP 0875356, US 6048088	. 182
2.3.25 DE 04239220	
2.3.26 DE 01529919, US 3288077	
2.3.27 EP 0330308, US 5048971	
2.3.28 DE 10114727, US 6974243, WO 2002076707	
2.3.29 US 6783270, WO 2002009919	
2.3.30 WO 2013128463, EP 2747980, US 20140036614	
2.3.31 JP 2008183721, DE 102007055764, US 2008181051	
2.3.32 DE 4329612, EP 641640, US 5573332	
2.3.33 DE 19860256, EP 1013402, US 6179460	
2.3.34 DE 04134026, EP 0537450, US 5318358	
2.3.35 DE 19706134	
2.3.36 JP 2013028055	
2.3.37 WO 1998013189 , US 6022133, EP 934151	
2.3.38 WO 1999025537, EP 1032492	
2.3.39 US 6116770, EP 1035960, WO 2000020189	
2.3.40 DE 29901899 U1	
2.3.41 US 6170975, WO 2000047393	
2.3.42 DE 10150006, EP 1434679, US 7080935	
2.3.43 DE 4202821, US 5267788, WO 1993014921	
2.3.44 DE 03014643, EP 0037984, US 4352568	
2.3.45 DE 02611908, US 4162854	
2.3.46 WO 1995033608, US 5487602, EP 764074	
2.3.47 DE 102004010553	
2.3.48 DE 04115591, EP 0513431	
2.3.49 WO 2011073181, EP 2512776, US 20120245909	. 201

3	Stoff	eigenschaften von Polymeren	203
3.1	Rheol	ogische Eigenschaften von Polymerschmelzen	203
	3.1.1	Einführung und Motivation	203
	3.1.2	Einteilung des rheologischen Verhaltens von Festkörpern	
		und Fluiden	204
	3.1.3	Vergleich zwischen rein viskosem und viskoelastischem Fluid	210
		3.1.3.1 Viskoses Fluid	210
		3.1.3.2 Viskoelastisches Fluid	211
	3.1.4	Temperaturabhängigkeit der Scherviskosität	215
		3.1.4.1 Temperaturabhängigkeit für teilkristalline Polymere	216
		3.1.4.2 Temperaturabhängigkeit für amorphe Polymere	217
	3.1.5	Einfluss molekularer Parameter auf rheologische Eigenschaften	210
	0.1.7	von Polymerschmelzen	219
	3.1.6	Scherströmungen: Schleppströmungen und druckgetriebene	201
		Strömungen	221
		3.1.6.1 Fließprofile der druckgetriebenen Rohrströmung	222 223
	3.1.7	3.1.6.2 Fließprofile der einfachen Schleppströmung	223
		Dehnströmungen	ZZ 4
3.2		rialverhalten von Mischungen – Berücksichtigung von	
	•	ner-Polymer und Feststoff-Polymer Systemen	227
	3.2.1	Materialeigenschaften von Zweistoffsystemen	229
		3.2.1.1 Einführung Mischsysteme	229
		3.2.1.2 Thermodynamische Materialdaten von Zweistoffgemischen	229
		3.2.1.3 Viskositäten von Zweistoffgemischen	231
		3.2.1.4 Mischbare Polymerblends	233
		3.2.1.5 Unmischbare (unverträgliche) Polymerblends	233
	3.2.2	Prozessverhalten beim Plastifizieren von Zweistoffsystemen	236
	3.2.3	Abschlussbemerkungen zum Einsatz in der Praxis	242
	3.2.4	Zusammenfassung	243
3.3	Diffus	siver Stofftransport in Polymeren	245
0.0	3.3.1	Stofftransportmechanismen	245
	0.0.1	3.3.1.1 Konzentrationsverlauf in der Nähe der	210
		Phasengrenzfläche	246
	3.3.2	Einflussgrößen des Stoffsystems	267
3.4		nierung der Produktschädigung bei der Verarbeitung von	
5.4		neren	272
	3.4.1	Einleitung	272
	3.4.2	Übersicht chemischer Reaktionen	273
	J. 1.2	3.4.2.1 Schädigung durch thermischen Abbau	274
		3.4.2.2 Schädigung durch oxidativen Abbau	276

		3.4.2.3 Schädigung über chemischen Abba		279		
		3.4.2.4 Schädigung durch mechanischen A		279		
		3.4.2.5 Einfluss von Metallen		280		
	3.4.3	Zusammenhang zwischen Produktschädig				
		Eigenschaften		280		
	3.4.4	Reduktion von Polymerschädigung bei der	· ·	283		
		3.4.4.1 Maschinelle und prozesstechnische		283		
		3.4.4.2 Änderung der Schmelzeviskosität d		201		
		Molekulargewicht und Fließmodifil		284		
		3.4.4.3 Minimierung von Reaktionspartne		285		
	0.45	3.4.4.4 Additive zur Reduktion von Polyme		285		
	3.4.5	Zusammenfassung	• • • • • • • • • • • • • • • • • • • •	287		
3.5		chnungsgrundlagen für die Strömung in keil	=			
		rspalten und Fließeigenschaften von gefüllte	•	289		
	3.5.1	0 0				
		Kunststoffschmelzen in der Keilspaltström	9	200		
		zur Beurteilung der Dispergierung		289		
		3.5.1.1 Einleitung – Deformation von Kuns		200		
		Scherung und Verstreckung in der		289		
		3.5.1.2 Grundlagen der Berechnung der Kohochviskose Medien		293		
		3.5.1.3 Kunststoffschmelzen mit unterschi		293		
		strukturviskosem Fließverhalten .		296		
		3.5.1.4 Simulationsergebnisse		298		
	3.5.2	Modellierung des Fließverhaltens hochgefü		309		
	0.0.2	inoutine and all inouvernations mongore		307		
4	Förd	erverhalten, Druck- und Leistungsverh	ıalten	317		
4.1	Einführung des Förder- und Druckverhaltens hochviskoser					
	Flüss	igkeiten in Extrudern		317		
	4.1.1	Durchsatz- und Druckverhalten, dimension	islose Kennzahlen	317		
		4.1.1.1 Schergeschwindigkeit und Viskosit	tät	317		
		4.1.1.2 Einfache qualitative Betrachtungen	ı an einfacher			
		ebener Strömung		319		
		4.1.1.3 Extruderkennzahlen und Druckgru				
		Extruder		327		
4.2	Einfü	hrung des Leistungsverhaltens hochviskose	r Flüssigkeiten in			
	Extru	ıdern		347		
	4.2.1	Durchsatz-Leistungs-Verhalten der ebenen	=			
		zwei Platten		347		
	4.2.2	Leistungskennzahl für einen Ringspalt		348		
	4.2.3	Grundgleichung der Leistungscharakterist	ik von Extrudern	350		

4.3		pation, Pumpwirkunsgrad Temperaturerhöhung und	
		neübergang	353
	4.3.1	Dissipation	353
	4.3.2	Pumpwirkungsgrad	354
	4.3.3	Temperaturerhöhung	357
	4.3.4	Wärmeübergang	365
4.4	Ausbl	lick zu den Abschnitten 4.1, 4.2 und 4.3	367
4.5		rverhalten, Druckverhalten und Leistungseintrag in der	
	Schm		369
	4.5.1	Dimensionslose Kennzahlen	369
	4.5.2 4.5.3	Teilgefüllte und gefüllte Schneckenabschnitte Förderparameter für Schneckenelemente und übliche	377
		Förderkennzahlen	381
	4.5.4	Förderverhalten bei Strukturviskosität	384
4.6	Aufga	ben zum Leistungseintrag und Rückstaulänge	391
	4.6.1	Aufgabe: Einfluss der Gangsteigung	391
	4.6.2	Aufgabe: Teilfüllung	393
	4.6.3	Aufgabe: Auslegung einer Druckaufbauzone mit einheitlicher	
		Steigung sowie voll- und teilgefüllt Bereichen	394
	4.6.4	Aufgabe: Auslegung der Druckaufbauzone mit verschiedenen	
	4 (=	Elementen mit 40 mm und 60 mm Steigung kombiniert	398
	4.6.5	Aufgabe: Einfluss von nicht-newtonschen Effekten	399
4.7	Ström	nungssimulation	401
	4.7.1	Einleitung zur Strömungssimulation	401
	4.7.2	Gefüllte Schneckenabschnitte	405
		4.7.2.1 Beispiel 1	405
		4.7.2.2 Beispiel 2	423
	4 = 0	4.7.2.3 Zusammenfassung und Ausblick	426
	4.7.3	Teilgefüllte Schneckenabschnitte	430
5	Funk	tionszonen im Extruder	437
5.1	Festst	tofftransport in den und im Extruder, Einzugsgrenzen	437
	5.1.1	Kenngrößen und Berechnungsmöglichkeiten	438
	5.1.2	Einzugsbegrenzungen	445
		5.1.2.1 Granulate	445
		5.1.2.2 Pulver	445
		5.1.2.3 Flakes	448
		5.1.2.4 Niedrig schmelzende Komponenten	448
5.2	Aufsc	hmelzen von Thermoplasten	449
	5.2.1	Aufgaben der Aufschmelzzone	449

	5.2.2	Schneckenelemente und Schneckenkonfiguration	451
	5.2.3	Messmethoden	452
	5.2.4	Wesentliche Schritte des Aufschmelzens	454
	5.2.5	Rechenmodelle	456
5.3	Misch	nen und Dispergieren	461
	5.3.1	Übersicht, Grundlagen und Experimente	461
		5.3.1.1 Distributives Mischen – Mischen in laminarer Strömung	462
		5.3.1.2 Dispersives Mischen	469
		5.3.1.3 Bestimmung der Mischgüte	478
		5.3.1.4 Formelzeichen zu Abschnitt 5.3.1	483
	5.3.2	Dreidimensionale Berechnungen des Misch- und	
		Verweilzeitverhaltens	485
		5.3.2.1 Zusammenfassung	494
5.4	Entga	sen von Polymerschmelzen	494
	5.4.1	Phasengrenzflächen und Oberflächenerneuerung	495
		5.4.1.1 Flüssigkeitsverteilung und Füllgrad	495
		5.4.1.2 Entgasungszeiten	510
	5.4.2	Konzentrationsänderung in der Entgasungszone	518
		5.4.2.1 Kennzahlen	518
		5.4.2.2 Blasenfreie Flüssigkeiten	519
		5.4.2.3 Einfluss der Oberflächenvergrößerung durch Blasen	524
	5.4.3	Auslegen von Entgasungszonen	525
	5.4.4	Numerische Simulation der Filmentgasung	528
_	Cool	and Carla dama	E2E
6		e-up und Scale-down	
6.1		hrung und Basis-Regeln für thermisch empfindliche Produkte	
	6.1.1	Unähnlichkeit	536
	6.1.2	Vergleich von Produktionsmaschinen	536
	6.1.3	Scale-down und Wege der Auslegung	537
	/ 1 1	6.1.3.1 Produkttemperatur	539
	6.1.4	Zusammenfassung/Ausblick	553
6.2		-up und Scale-down mit Exponentenansätzen	555
	6.2.1	Grundlegende Problemstellung	555
	6.2.2	Einfacher Skalierungsansatz	556
	6.2.3	Modellbasierter Skalierungsansatz	557
		6.2.3.1 Modelltheorie	558
		6.2.3.2 Modellexponenten	568
	(0 4	6.2.3.3 Wärmeströme über den Zylinder	572
	0.2.4	Experimentelle Ergebnisse	574

6.3	Scale	-up und	Scale-down mit Kennzahlen	576	
	6.3.1	Kennza	ahlen der ganzen Maschine	577	
		6.3.1.1	Dimensionsloser Durchsatz	577	
		6.3.1.2	Spezifischer Energieeintrag	578	
	6.3.2	Geome	trische Maßstabsübertragung	579	
		6.3.2.1	Geometrisch ähnliche Maschinen	579	
		6.3.2.2	Drehzahl und Drehmoment	579	
		6.3.2.3	Übertragung bei unterschiedlichen Geometrien	580	
		6.3.2.4	Dimensionsanalyse für reales Produktverhalten	585	
		6.3.2.5	Einfaches Beispiel für ein volumetrisches Scale-up	587	
7	Mase	chinent	echnik	591	
7.1	ZSK I	Baureihe	en und Anwendungen	591	
, •I	7.1.1		klung zu hohen Drehmomenten, Volumina und	3/1	
	, , , , ,		thlen	591	
	7.1.2		oment- und volumenbegrenzte Durchsätze	595	
	7.1.3		dungsbeispiele für die Kunststoffindustrie	597	
		7.1.3.1	Hohes Drehmoment zur Glasfaserverstärkung von		
			Kunststoffen	597	
		7.1.3.2	Hohes Drehmoment zur Folienextrusion von		
			ungetrocknetem PET oder PLA	600	
		7.1.3.3	Hohes Drehmoment bei bisher volumenbegrenzten		
			Anwendungen	600	
		7.1.3.4	Verarbeitung von temperatur- und scherempfindlichen		
			Produkten	602	
	7.1.4	Anwen	dungsbeispiele für die Chemieindustrie	605	
		7.1.4.1	Kleb- und Dichtstoffe	605	
		7.1.4.2	Chemische Reaktionen in Doppelschneckenextrudern	608	
7.2	Gehäuseeinheiten				
	7.2.1		ung	610	
	7.2.2		en	611	
		7.2.2.1	Zugankerversion für ZSK 18 - 54	611	
		7.2.2.2	Flanschversion für ZSK 58 - 320	612	
		7.2.2.3	Klammerversion für ZSK 350 - 420	612	
	7.2.3	Varian	ten	613	
		7.2.3.1	Geschlossenes Schneckengehäuse	613	
		7.2.3.2	Geschlossenes Schneckengehäuse mit Bohrung	614	
		7.2.3.3	Offenes Schneckengehäuse	614	
		7.2.3.4	Kombi-Schneckengehäuse	615	
		7.2.3.5	Sonderformen	615	

	7.2.4	Verschleiß- bzw. Korrosionsschutz	615
		7.2.4.1 Massivgehäuse: Nitriert oder durchhart	616
		7.2.4.2 Gehäuse mit Liner (Ovalbuchse)	616
		7.2.4.3 Direkt beschichtete Schneckengehäuse	617
	7.2.5	Beheizung von Schneckengehäusen	617
		7.2.5.1 Heizpatronen	617
		7.2.5.2 Heizschalen, Heizplatten	618
	7.2.6	Kühlung und Temperierung	618
		7.2.6.1 Ein Kreislauf	618
		7.2.6.2 Zwei Kreisläufe	619
7.3	Erhöh	nung der Verfügbarkeit des Doppelschneckenextruders durch	
,,,		Ite Werkstoffwahl für produktberührende Bauteile	619
	7.3.1	Einleitung	619
	7.3.2	Verschleißphänomene an Doppelschneckenextrudern	,
		in der Praxis	620
		7.3.2.1 Abrasiver Verschleiß	621
		7.3.2.2 Adhäsiver Verschleiß	624
		7.3.2.3 Korrosion	627
	7.3.3	Messen und Bewertung von Verschleißkenngrößen	629
		7.3.3.1 Messung der abrasiven Verschleißbeständigkeit	629
		7.3.3.2 Messung des adhäsiven Verschleißes	630
		7.3.3.3 Korrosionsmessung	631
	7.3.4	Ausführungsformen und Werkstoffausführungen für	
		Extrudergehäuse und Schneckenelemente	632
		7.3.4.1 Ausführungsformen der Gehäuse	632
		7.3.4.2 Ausführungsformen von Schneckenelementen	634
		7.3.4.3 Werkstoffausführung von Extrudergehäuse und Liner	638
		7.3.4.4 Werkstoffausführung von Schneckensatzelementen	641
	7.3.5	Ausblick	644
7.4	Dyna	mische Strukturanalysen an Doppelschneckenextrudern und	
	einwe	elligen Austragsextrudern	644
	7.4.1	Aufbau des Strukturmodells	645
	7.4.2	Schwingungsanalyse an einem ZSK	646
	7.4.3	Optimierung einwelliger Extruder	652
	7.4.4	Strukturschwingstechnische Auslegung	656
	7.4.5	Zusammenfassung/Ausblick	661
7.5	Mess	technik und prozessintegrierte Qualitätssicherung	662
	7.5.1	Messtechnische Grundlagen	663
	7.5.2	Druck- und Temperaturmesstechnik	664
		7.5.2.1 Temperatur	664
		7.5.2.2 Druckmesstechnik	666

	7.5.3	Rheologische Messtechnik	669
		7.5.3.1 Laborrheometer	669
		7.5.3.2 Prozessrheometer	671
	7.5.4	Farbmessung	672
	7.5.5	Sondersysteme	672
		7.5.5.1 Ultraschallmesstechnik	673
		7.5.5.2 Modellprädiktive Regelung und virtuelle Sensoren	673
8	Anwe	endungen der gleichläufigen Doppelwellenschnecke 6	575
8.1	Comp	ooundieren in der Praxis	675
	8.1.1	Durchsatzbegrenzung	675
		8.1.1.1 Drehmomentbegrenzung	676
		8.1.1.2 Volumenbegrenzung	676
		8.1.1.3 Weitere Begrenzungen	676
		8.1.1.4 Begrenzung durch Peripherie	677
	8.1.2	Vormischung	678
	8.1.3	Schmelzeentgasung	679
		8.1.3.1 Einflussfaktoren	679
		8.1.3.2 Technische Ausführung	680
	8.1.4	Strangspritzkopf	682
	8.1.5	Prozesskontrolle	683
		8.1.5.1 Prozessüberwachung	684
		8.1.5.2 Beispiel: Vorsicht, Falle!	684
	8.1.6		685
		3 3	685
		8.1.6.2 Verschleiß	686
	8.1.7	1	686
			686
			687
		0	688
			688
	8.1.8	Simulation	689
8.2	Farbn	masterbatche	689
	8.2.1	Grundsätzliche Verfahrensidee	690
	8.2.2	Materialien	692
		8.2.2.1 Pigmente	693
		8.2.2.2 Auswahl des Polymers	701
		1 0	701
	8.2.3	Mischen	702
		8.2.3.1 Schwerkraftmischer	703

		8.2.3.2	Langsam laufender stationärer oder mobiler (Container) Mischer	7(
		8.2.3.3		7(
		8.2.3.4		7(
	8.2.4	Dosiere	en	7
	8.2.5		er	7
			Premix	7
			Split-feed	7
			Nachfolgeaggregate	7
			Verfahrensparameter	7
	8.2.6		itsbestimmung	7
		8.2.6.1	Farbmessung	7
		8.2.6.2	Filterdrucktest	-
		8.2.6.3	Agglomerate und Gelpartikel	7
8.3	Herst		on TPV durch dynamische Vulkanisation	-
0.0	8.3.1		izierung von TPE	-
	8.3.2		llung von TPV auf Basis EPDM/PP	-
	0.0.2	8.3.2.1	Basisrohstoffe für TPV (EPDM/PP)	-
			Vernetzer	-
			Herstellprozess für TPV (EPDM/PP)	-
			Herausforderung Verweilzeit	-
			Eigenschaften von TPV (EPDM/PP)	7
	8.3.3		if Basis nachwachsender Rohstoffe ("Bio-TPV")	-
			Basisrohstoffe für Bio-TPV	-
			Herstellprozess für Bio-TPV	
			Eigenschaften von Bio-TPV	7
8.4	Entga		Polymerschmelzen	7
0	8.4.1		en der Entgasung	7
	8.4.2		ung von Entgasungsextrudern	7
	01112	8.4.2.1	Materialzuführung und Flashentgasung	7
			Gestufte Vakua	7
			Füllgrad	7
			Restentgasung und Schleppmitteleinsatz	7
			Auslegung von Extruder und Entgasungszonen	7
	8.4.3		ip von Entgasungsextrudern	-
	8.4.4		rensbeispiele	-
		8.4.4.1		í
			lösungen	-

		8.4.4.2 Entgasen von Lösungsmitteln aus synthetischem	
		Kautschuk (Styrol-Butadien-Verbindungen)	747
		8.4.4.3 Entgasen von Vinylacetat aus LDPE/EVA-Copolymer	747
		8.4.4.4 Entgasen von POM	748
		8.4.4.5 Entgasen von PC	749
		8.4.4.6 Entgasen von PMMA	749
		8.4.4.7 Entgasen von PES und PSU	750
		8.4.4.8 Entgasen von ABS	752
		8.4.4.9 Entgasen von ungetrocknetem PET	752
	8.4.5	Zusammenfassung	754
8.5	Reakt	tive Extrusion	755
	8.5.1	Einführung	755
	8.5.2	Parametereinflüsse anhand ausgewählter Anwendungsbeispiele	757
		8.5.2.1 Aktivierte anionische Polymerisation von Lactamen	759
		8.5.2.2 Polymerisation von Acrylaten	760
		8.5.2.3 Ringöffnungspolymerisation von ε-Caprolacton	762
	8.5.3	Wirtschaftlich relevantes Beispiel:	
		Thermoplastische Polyurethane	763
	8.5.4	Modellierung	765
	8.5.5	Scale-up	767
8.6	Leber	ebensmittelextrusion 7	
	8.6.1	Extrusion von Frühstückszerealien	773
		8.6.2.1 Rohwaren und Mischerei	775
		8.6.2.2 Vorkonditionierung und Extrusion	779
		8.6.2.3 Kurzzeittemperierung und Flockierung	785
		8.6.2.4 Röstung, Besprühung und Trocknung	787
	8.6.2	Produkte	789
	8.6.3	Lebensmittelsicherheit in der Lebensmittelextrusion	791
	8.6.4	Zusammenfassung	795
	8.6.5	Abkürzungsverzeichnis	795
8.7	Extru	Extrusion von pharmazeutischen Massen	
	8.7.1	Einleitung	797
	8.7.2	Grundlagen der Schmelzextrusion	798
	8.7.3	Maschinendesign	798
	8.7.4	Anlagenlayout	800
	8.7.5	Containment-Anforderungen	805
	8.7.6	Zusammenfassung und Ausblick	806
Ind	ex		807
	J/L		337