Principles of the
Determination of Elastic
Properties

B 3.1 Creep Recovery Experiment and
Retardation Spectrum

Elastic properties manifest themselves in many effects. In principle, each of them
could be used to get insight into the elastic behavior of a material. A rather obvious
feature of elastic properties is the recovery of some of the deformation previously
exerted on a sample, when the deforming stress is released. For quantitative meas-
urements, the deformation and the recovery as well have to be performed under
certain conditions. A convenient method is creep and the subsequent creep re-
covery. The principle of such a test is sketched in Figure 3.1. At the time t =0 a
sample is loaded by a constant stress and the deformation registered as a function
of time. After the creep time ¢, the stress is set to zero. For a viscoelastic sample,
some of the total deformation recovers before attaining a time-independent level.
This plateau is due to the irreversible viscous deformation of the sample and the
recoverable portion has its origin in the elastic behavior of the material.
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o(t) = o,
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Figure 3.1 Schematic representation of a creep and creep recovery experiment
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The deformation itself depends on material properties and on external parameters.
Therefore, in the case of creep experiments, the compliance defined as the defor-
mation related to the stress is discussed as the corresponding material-specific
function. In Figure 3.1 the creep compliance

I(t,o)=~lt,0) /0o (3.1)

is plotted, with the variable o being the constant shear stress applied and ~ the
resulting total shear. According to the Boltzmann superposition principle the creep
compliance can be written as (see, e.g., [3.1])

(t,9) =J, +v(t,0)4 !

/ l,(T) =
( o n(o)

(3.2)

J, is the instantaneous compliance, »(t,o ) the time-dependent recoverable compli-
ance or creep function, and 7)(o) the viscosity. This additivity is visualized in Fig-
ure 3.1. It should be mentioned, however, that the superposition principle was de-
rived by Boltzmann for the linear case, in which the creep function and the
viscosity are independent of the stress applied. Many experimental results have
shown that the decomposition of the creep compliance as given by Equation 3.2
can be used in the nonlinear regime too.

Because the instantaneous compliance is comparatively small and the creep func-
tion attains a constant value after some time, for long enough creep times the vis-
cous part dominates the compliance and the viscosity can be obtained from Equa-
tion 3.2:

(3.3)

. t
n(o)= lim
t=~ J(t,o

For correspondingly small stresses in the linear regime, the zero-shear viscosity 7,

follows as
, = lim 3.4
hy T (34)
In the linear regime the creep function can be described numerically by
4.11):2:11(1—0 /i) (3.5)
i=1

with 7, being discrete retardation times and /, the corresponding retardation
strengths. For a continuous retardation spectrum it follows:
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X

pm:fﬂﬁlﬂﬂm (3.6)

with the retardation function f (7).

The recoverable portion of shear 7, and therewith the recoverable compliance /, as
functions of the recovery time ¢, are dependent in general on the stress o and the
time ¢, of the preceding creep; that means

, “’([,.[H,J)
It t,,0)=———7 (3.7)

a

Because the recoverable compliance is defined as the difference between the total
compliance and the viscous portion, Equation 3.7 can be written as

, v, (t,t,0)
/(L t),0)=——"—"= o, = J, +t,,t,,0) (3.8)

a

For polymer melts and solutions the time-dependent recoverable compliance at-
tains a constant value at sufficiently long creep and recovery times, and one gets
for the steady-state recoverable compliance:

J,(0)= lim J (¢t t,,0) (3.9)

[ —n

1, —nc

and for the linear steady-state recoverable compliance:

J! =1lim J, (o) (3.10)

This quantity is of great interest insofar as it is related to the retardation spectrum
f(7)by

X

19 =Jy+ [ £(r)n (3.11)

where 7 designates the retardation time. For a discrete retardation spectrum one
can write, according to Equation 3.5,

=1+ (3.12)
i=l1

with J; being the retardation strengths. More detailed information on the deriva-
tion of these relations can be found in [3.1], for example. For polymer melts the



10 3 Principles of the Determination of Elastic Properties

instantaneous compliance J, is negligibly small in comparison with the time-
dependent recoverable compliance. Thus, from creep recovery experiments in the
linear range the retardation spectrum can be determined directly, which is a fin-
gerprint of molecular motions. That is the reason why measurements of the recov-
erable compliance have found much attention recently as a rheological tool for the
characterization of polymers. Examples are given in Section 10.3.3.

In the linear steady-state regime the creep compliance can be written as

Jy=1J) +t/n, =10+t /7,
where

(
Te = Mo/,

(3.13)

(3.14)

is defined as the longest retardation time according to the Voigt-Kelvin model (see,
e.g., [3.1]), with 7, being the zero-shear viscosity.

Three distinct times are used to discuss creep recovery: ¢ describes the time scale
of the experiment and ¢, is assigned to the duration of the creep experiment. Then,
the recovery time follows ¢, =t —¢, as it is obvious from Figure 3.1 and Figure 3.2.
As a matter of convention, for recovery and creep the same time scales are used,
and then creep compliance and recoverable compliance can be compared conven-

iently.

log J, log J,

0 t—= 14 tat=t; —

logt ,logt,

Figure 3.2 Different representations of a creep experiment

As sketched in Figure 3.2, the strain ~ increases during creep and consequently
the compliance / as the corresponding material-specific function shows a similar
behavior. During recovery the total strain decreases, but the recoverable strain -,
becomes larger. Thus, the recoverable compliance is a material-specific function
increasing with time and, therefore, it is reasonable to present /, on the same scale
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Table 6.1 Characteristic Molecular Data of PS | and PS Il

74 1.2

PS 1 6.9-10°
PS I 39 1.1 1.1-10*

Reprinted with permission from [6.27]; copyright 1980 The Society of Rheology.

PS Il is distinguished from PS I by a distinct high molar mass component, while PS
I shows a weak high molar mass tail sometimes found with anionic polystyrenes.
The high molar mass component of PS II is not reflected by the polydispersity in-
dex (cf. Table 6.1), but it has a significant effect on the elastic properties as can be
seen from the linear steady-state recoverable elongational compliance D' (cf. Equa-
tion 3.51) listed in Table 6.1. For PS II this quantity is higher by a factor of 16 than
for PS 1. These results are in accordance with those on polystyrene blends pre-
sented in Figure 6.12.

The technique of measuring recoverable elongations is described in Section 4.2.6.
The compliances in Table 6.1 were measured at a tensile stress of o, = 10° Pa,
which was found to be in the linear range of deformation for the narrowly distrib-
uted polystyrenes [6.27].

6.3.2 Nonlinear Elastic Properties

As was shown in Figure 4.3 for a PP, the recoverable compliance / (t)is stress-in-
dependent for small stresses and then distinctly decreases with stress. The non-
linear steady-state values are attained at recovery times shorter than in the linear
range. From Figure 5.1 it can be concluded for a commercial polypropylene that
the stress dependence of /, is more distinct than that of the shear viscosity 7. It is
well-established that the viscosity decrease with shear rate or stress, respectively,
becomes more pronounced the broader the molar mass distribution. This is demon-
strated in the left part of Figure 6.15 for the three polypropylenes PP 2, PP 4, and
PP 6 with the polydispersity indices 3.5, 6.4, and 7.7, respectively [6.7]. For a
clearer presentation, the viscosities were normalized by their zero-shear values 7,
At the shear stress of 103 Pa, 7 has decreased by about 30% for the sample with the
narrowest distribution and by 60% for that with the broadest one.
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Figure 6.15 Normalized viscosity 7 (left) and normalized steady-state recoverable compliance
J_ (right) as functions of shear stress o for three polypropylenes with the different polydisper-
sity indices given in the inset [6.7]

The stress dependence of the compliance is much more pronounced than that of
the viscosity, as becomes obvious from the right part of Figure 6.15. Here the
steady-state recoverable compliance normalized by its linear value is plotted as a
function of stress. For the smallest molar mass distribution it becomes smaller by
about 80% and even 90% for the broader one at o = 103 Pa. In the inset of Fig-
ure 6.15, the /! of the three samples is listed. /! increases by a factor of 3.5 from PP
2 to PP 4, but only by a factor of 1.3 from PP 4 to PP 6. These differences in the
linear quantities are reflected by the compliances in the nonlinear regime, too,
presented in Figure 6.15.

Considering the transition from the linear to the nonlinear regime it is obvious for
the viscosities that the critical stress becomes lower with increasing polydisper-
sity. The same can be observed for the recoverable compliances, but in general a
deviation from the linear range is observed at stresses lower than for the viscosity.

A behavior similar to that of the polypropylenes is presented for the metallo-
cene-polymerized linear low density polyethylenes in Figure 6.16. Their molecular
data are given in Table 6.2. According to the polymerization technique, long-chain
branching is not to be expected and could not be found analytically. As seen from
the data in Table 6.2, /! increases with the polydispersity index, which reflects the
molar mass distributions of the equally polymerized polyethylenes. Like for the
polypropylenes in Figure 6.15, the sample with the broadest distribution exhibits
the strongest stress dependence of the recoverable compliance and starts to devi-
ate from the linear behavior at the smallest stress. The mLLDPE with a polydisper-
sity index between the two others behaves as expected. These results may allow
the conclusion that for the three polyethylenes the polydispersity indices mirror
the distributions.
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Table 6.2 Characteristic Data of Metallocene Polymerized Linear Low Density Polyethylenes
with Hexene as Comonomer [6.7]

69 2.2 2.0

mLLDPE 1
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Figure 6.16 Normalized recoverable compliance as a function of shear stress for the three
metallocene linear low density polyethylenes (mLLDPE) whose molecular data are given in
Table 6.2 [6.7]

Another function describing nonlinearity is the damping function h(~ ) defined by
Equation 5.1. In [6.17] it is shown for a series of linear polyethylenes and polypro-
pylenes that /(~ | does not depend on the molar mass distribution. The same can be
concluded from investigations on polystyrenes in [6.26].

A typical nonlinear elastic quantity is extrudate swell. As already mentioned in
Section 6.2.2, in which the influence of molar mass on nonlinear elastic properties
is discussed, there are not many studies in the literature on the extrudate swell of
well-defined samples and some of them are even contradictory to each other. For
example, in [6.18] it is reported for HDPE that the extrudate swell decreases with
increasing M, /M. Just the opposite behavior is found for HDPE in [6.19]. An in-
sight into the complexity of the relations may be obtained from [6.28], where it was
shown on binary blends of HDPE prepared by Ziegler-Natta catalysts that for a
fixed composition the extrudate swell reaches a maximum as a function of the
molar mass of the higher molar mass component. Additionally, it came out that for
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two given blend components the higher molar mass fraction, which was changed
between 0.3 and 0.6, has some influence on the extrudate swell. The extrudate
swell was determined at a shear rate of 300 s~ compared to 3 s7!in [6.18] and 3 s7!
and 153 s7! in [6.19]. Furthermore, the geometries of the capillaries used were
different. According to Section 5.6, these different experimental conditions make a
quantitative comparison of the results not meaningful. Nevertheless, the results
on the blends may throw some light on the contrary findings from the literature on
the HDPE described above. Due to the various structural features of commercial
HDPE, comprising rather often broad molar mass distributions and small amounts
of branching, their molecular compositions may be different, giving rise to an ex-
trudate swell increasing or decreasing with M, /M, . Such an explanation is not satis-
factory, however, neither from a practical nor from a fundamental point of view.
Therefore, measurements on polystyrene being linear by nature may be able to ex-
plore some aspects of the effects of the molar mass distribution on extrudate swell.

The extrudate swell of two polystyrenes with very similar molar masses M, , but
different molar mass distributions, is presented in Figure 6.17 [6.2]. It is evident
that the broader molar mass distribution results in a significantly higher extrudate
swell. Similar to the results in Figure 6.6, the measured data can be described by a
straight line in the double-logarithmic plot chosen, representing a power law be-
tween extrudate swell and shear stress at the wall of the capillary. For the reasons
mentioned before, this relationship is empirical and valid only in a limited range of
stresses. The viscosity functions of the two different polystyrenes presented in Fig-
ure 6.17 are discussed in [6.29].

(1]
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Figure 6.17 Extrudate swell S = d/d, — 1 as a function of the stress o at the wall of a capil-
lary with the length to radius ratio L / R = 20 for two polystyrenes of similar molar masses i/ ,
but different molar mass distributions. The extrusion temperature was 190 °C. Reprinted from
[6.2] with permission from Springer Nature



Elastic Behavior and
Its Relevance for
Various Applications

B 8.1 Creep Recovery Experiments as a
Contribution to Molecular Analysis

Measurements of creep recovery have the advantage that the time dependence of
the viscoelastic behavior of polymer melts can be obtained with high accuracy,
because the viscous deformation does not mask the elastic effects, which may be
comparatively small. Furthermore, the creep and creep recovery, respectively, can
be extended to long experimental times, which are only limited by the thermal
stability of a sample. Thus, processes with long retardation times can be investi-
gated. The features of creep recovery and its analytical power are demonstrated in
the following on a linear low density polyethylene (LLDPE) in comparison with a
typical low density long-chain branched polyethylene (LDPE).

8.1.1 Creep Recovery Compliance

The LDPE considered is a common high pressure polyethylene polymerized in a
tubular reactor. The LLDPE studied is an ethylene/octene copolymer synthesized
by a Ziegler-Natta catalyst. The LDPE has a polydispersity index of M /M, = 14
and for the LLDPE M, / M = 3 is found [8.1]. The long-chain branches of the LDPE
are arranged in a tree-like structure, while for the LLDPE it can be assumed that
even a small amount of long-chain branches is excluded due to the polymerization
technique used. The GPC traces do not show any indication of a distinct high molar
mass component in the two materials [8.1].

As discussed before (see Section 4.2.1), the creep recovery curve depends on the
previous creep time ¢, if the steady state has not been reached. This feature is
demonstrated in Figure 8.1 for the LLDPE studied in the linear range of deforma-
tion. In comparison with Figure 4.2 the recovery curves look different. At creep
times ¢, around 100 s a steady-state compliance, independent from the previous
creep, seems to be approached (see the filled circles and triangles in Figure 8.1).
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But then the steady-state compliance distinctly increases with ¢, again. This be-
havior becomes more evident from Figure 8.2. In this figure, the steady-state recov-
erable compliance /, is plotted linearly as a function of the creep time ¢, presented
on a logarithmic scale.
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Figure 8.1 Creep recovery compliance /. in the linear range of deformation as a function
of the recovery time ¢ for the LLDPE at different creep times ¢,. Reprinted from [8.1] with
permission from Springer Nature
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Figure 8.2 Steady-state recoverable compliance /_ as a function of the creep time ¢, in the
linear range of deformation for the LLDPE and the LDPE. Reprinted from [8.1] with permission
from Springer Nature
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For the LDPE a continuous increase in /, up to a plateau is found. The compliance
of the LLDPE increases moderately first, but then jumps up steeply and within the
scatter of the experiments reaches a plateau for long creep times, which is dis-
tinctly higher than that of the LDPE. These results lead to the conclusion that for
the LLDPE two deformation processes may be assumed, the time dependencies of
which are different.

It is interesting to see how the different ecovery behavior of each of the two sam-
ples as a function of the previous creep time in Figure 8.2 is reflected by the de-
pendence of the recoverable compliance /, on the recovery time ¢, represented in
Figure 8.3. At shorter times, the /, of the LDPE is higher than that of the LLDPE.
But the steady-state value and the time at which it is reached are significantly
smaller than for the LLDPE. In the double-logarithmic plot of Figure 8.3 the step of
the compliance for the LLDPE revealed by the linear presentation in Figure 8.2 is
hard to detect. It is indicated by a slight change in slope, marked by the arrow.

10_5 T T T T T T 1
102 10" 10° 10’ 102 108 10* 10°
t.[s]

Figure 8.3 Recoverable compliance / as a function of the recovery time ¢, in the linear
range of deformation for LDPE and LLDPE in a double-logarithmic plot. Reprinted from [8.1]
with permission from Springer Nature

8.1.2 Retardation Spectra
Some evidence for the two retardation processes that are evident from Figure 8.2 is

obtained from the retardation spectra in Figure 8.4. They were calculated accord-
ing to [8.2] and [8.3], based on the relation

1(6) =320 (1—e") (8.1)
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with 7, being the discrete retardation times and /, the retardation strengths. Equa-
tion 8.1 follows from Equation 3.5 according to

()=, +2(t,) (8.2)
with the instantaneous compliance /, being negligibly small for polymer melts.
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Figure 8.4 Retardation spectra of the LDPE and the LLDPE calculated from Figure 8.3.
The symbols represent the discrete retardation strengths for the chosen retardation times,

and the full lines describe the continuous retardation spectra /() /Inb, where the step
width 6 was chosen as 10. Reprinted from [8.1] with permission from Springer Nature

The full lines describe the continuous retardation spectra according to Equation 6.8:

J(7)= / L(T¥In(7)

For the LDPE a “smooth” spectrum is obtained, while for the LLDPE a shoulder be-
comes visible, which indicates two retardation processes superposing each other.

As it is demonstrated by Figure 8.2 and Figure 8.4, measurements of the recovera-
ble compliance are a sensitive tool to detect different retardation processes within
a polymer melt. However, it is not possible to draw conclusions from the retar-
dation spectra on the relevant molecular structures underlying the processes. For
such kind of analysis other methods have to be applied, as shown and discussed in
[8.1]. From differential scanning calorimetry (DSC) and temperature rising elution
fractionation (TREF) it was concluded that the LLDPE may consist of two species
with different concentrations of comonomers, which are not miscible with each
other and give rise to the two different retardation processes observed.
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8.1.3 Calculation of Dynamic-Mechanical Quantities from

Retardation Spectra

According to the linear theory of viscoelasticity, the real part /' and the imaginary
part /” of the complex compliance \/' \ as functions of the angular frequency w are
related to the discrete retardation spectrum, defined in Equation 8.1, by (see, e.g.,

[8.4]):

, 8, I
J ‘“')*L/A T 22
k=1

1+wr,

and

» 1 n w7
/l(“")i_}Z/*] ,/;_*

Wiy k=1 k

with 7, being the zero-shear viscosity.

(8.3)

For the LLDPE, ;" and /", calculated according to Equation 8.3 and Equation 8.4

from the spectrum in Figure 8.4, are presented in Figure 8.5 (open symbols) by

setting

/
Wi *]/’A

(8.5)
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Figure 8.5 Real part /' and imaginary part /” of the complex compliance calculated from the
discrete retardation spectrum in Figure 8.4 as functions of the discrete angular frequencies w
(symbols) in comparison with the functions measured with a rotational rheometer (curves)
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in the following, the emphasis lies on elastic properties of various combinations of
matrices and nanofillers.

B 10.1 Nanoparticles Investigated

As a reference filler material, silica particles are used. They are produced on an
industrial scale by flame pyrolysis and are commercially available. The median
diameters dj, of the two kinds of beads investigated are 20 and 70 nm [10.3]. The
advantage of these particles is their compact spherical structure, which does not
change under the stress exerted on them in a melt during flow. They are very suit-
able for fundamental investigations, but their importance as nanofillers for com-
mercial polymeric materials is rather limited.

Of more practical relevance are nanoclays. Detailed information about the struc-
ture of this montmorillonite can be obtained from the corresponding literature
([10.4], for example). Nanoclays consist of many platelets about 1 nm thick, with
lateral dimensions of 100 to 500 nm, that are stacked together. To obtain a high
specific surface area for interactions with the matrix molecules, the stacks have to
be exfoliated as extensively as possible. Procedures for the preparation of polyme-
thylmethacrylate (PMMA) with nanoclay and the control of particle exfoliation and
distribution are described in [10.5].

Another widely available natural product with a platelet structure is graphite. The
edges of the platelets measure several microns but the thickness is around 200 nm,
resulting in aspect ratios between 10 and 20. Graphite consists of layers with
thicknesses down to atomic dimensions. The complete exfoliation of the graphite
layers is very challenging, but bears a high potential for carbon materials with new
properties. In 2004, the first free-standing two-dimensional sheet consisting of one
layer of carbon atoms was described, which was obtained from the cleavage of
graphite [10.6]. This material is called graphene and is distinguished by large spe-
cific surface areas, a high tear strength, remarkable electrical conductivity, and
good transparency. Its exploration as a promising new filler for polymeric materi-
als is irrelevant, however, as long as an efficient production on a larger scale is not
available. Nevertheless, it follows from [10.7], for example, that interesting proper-
ties could be generated in polymeric materials by the addition of graphene-type
fillers even if carbon monolayers are not obtained by the cleavage of particularly
pretreated graphite.

Another carbon-based filler available in several modifications on an industrial
scale is carbon black (CB). An overview of the properties of carbon black is given
in [10.8], for example. Carbon black has been used widely in the rubber industry
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and, therefore, rheological properties of mainly elastomers filled with CB can be
found in the literature ([10.9], for example). A systematic investigation of the rheo-
logical properties of a thermoplastic material with carbon black is published in
[10.10], using polystyrene as the matrix. However, elastic properties of melts of
polymeric materials with carbon black have been investigated only very sparsely.
Interpretations of rheological measurements are complex insofar as the primary
particles of carbon black with diameters of about 50 nm may form larger agglom-
erates, an example of which is given in Figure 10.1. The shape of the agglomerates
depends on many factors, such as the type of carbon black, the matrix polymer,
and the compounding process.

Figure 10.1 Transmission electron micrographs of different magnifications for a PMMA filled
with the carbon black PRINTEX XE 2 [10.11] at a volume fraction of & = 0.05. Adapted from
[10.12]

Aspect ratios of the carbon black agglomerates are difficult to assess, but may be
assumed to lie at around 10 to 20. The carbon black aggregates are able to form a
three-dimensional network that is decisive for the electrical conductivity of a com-
posite (see [10.5], for example).

Carbon nanotubes (CNT) are nanofillers with potential for interesting applications.
They were discovered at the beginning of the 1990s [10.13] and their fundamental
properties were investigated in the following years on small amounts manufac-
tured on a laboratory scale. From 2010 onward, CNT have been produced industri-
ally, and since that time it is possible to exploit their potential as fillers in poly-
meric materials. Due to their graphitic structures, carbon nanotubes can be
considered as wrapped up graphene sheets. One distinguishes nanotubes consist-
ing of a single wall (SWCNT) and those with multiple walls (MWCNT) of numbers
typically between 3 and 15. The inner diameters of CNT lie at several nm; the outer
ones, between 10 and 20 nm. The lengths of the nanotubes are not uniform. They
may differ between 1 and more than 10 pm and are prone to breakage during pro-
cessing in a melt. CNT are materials with nanoscale dimensions in only one direc-
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tion. The filament structure of a CNT is the reason for a flexibility that may lead to
statistically distributed entanglements of fibers. These morphological features
make it difficult to find relations between properties of polymeric materials filled
with nanotubes and their geometries.

The short discussion above on the morphology of particle-filled polymer melts ad-
dresses the problem of getting a reliable picture of the real filler distribution within
a sample. Even in the case of the simple geometry of silica beads the arrangement
of the fillers within a sample may be difficult to assess, as has to be concluded from
Figure 10.2, which shows the distribution of 2.1 vol % of the silica beads with
20 nm of mean diameter in a PMMA matrix. The silica beads are not totally sepa-
rated from each other, but form agglomerates of various shapes. The specific sur-
face area of such agglomerate is difficult to assess because of its rugged shape and
some kind of porosity, which may offer areas within the pores for interactions with
the matrix molecules. In any case, it has to be stated that the diameter of a particle
may only represent a nominal quantity and that the real morphology may be de-
pendent on properties of the filler and the matrix and the way of processing. This
example throws light on the difficulties which arise in compounding when a good
separation of filler particles has to be achieved. The optimal dispersion of nano-
particles is a big problem in polymer processing, particularly when cost-effective
processes based on melt extrusion are applied.

Figure 10.2 Transmission electron micrograph of two magnifications for PMMA filled with
silica beads of a nominal diameter of 20 nm. Adapted from [10.3]



