
2

When we choose a theoretical description of the process correlations in the extru-

sion die and calibration unit for a reliable design of those systems, there are two 

things in particular to be considered:

 Simplifications and boundary conditions based on the physical models always 

have to be analyzed critically with regard to the problem at hand.

 Data pertaining to the processed material and that are being entered into the 

models become of key importance. These are data that characterize flow, defor-

mation, and relaxation behaviors and heat transfer; in other words, its rheologi-

cal and thermodynamic data [1].

 2.1  Rheological Behavior

A general flow is fully described by the law of conservation of mass, impulse, and 

energy, as well as by the rheological and thermodynamic equations of state. The 

rheological state equation, o"en referred to as the material law, describes the 

 correlation between the flow velocity field and the resulting stress field. All the 

flow properties of the given polymer enter this equation. The description, explana-

tion, and measurement of the flow properties are at the core of the science of defor-

mation and flow called rheology [2].

Rheology will be introduced in this chapter to the extent to which it is needed for 

the design of extrusion dies. Polymeric melts do not behave as purely viscous 

 liquids; they also exhibit a substantial elasticity. Their properties therefore lie be-

tween ideal Newtonian (viscous) fluids and ideal Hookean (elastic) solids. This is 

referred to as viscoelastic behavior or viscoelasticity. When describing rheological 

material behavior, a clear distinction is made between purely viscous behavior and 

the combination of viscous and time-dependent elastic behavior.

Properties of 
Polymeric Melts
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2.1.1  Viscous Properties of Melts

During the process of flow as it occurs in extrusion dies, the melt is subjected to 

shear deformation. This shearing flow is caused by the fact that melts adhere to the 

die walls. This is called Stokean adhesion. A change in flow velocity through the 

flow channel area is the result of this, and it is represented by the following  equation:

γ
υ

=−

d

dy
,  (2.1)

 Flow velocity

y Direction of shear

During the steady-state shear flow, a shear stress  occurs between two layers of 

the fluid at any point. In the simplest case of a Newtonian fluid, this shear stress  

is proportional to the shear rate :

τ η γ= ⋅ .  (2.2)

The constant of proportionality  is called the dynamic shear viscosity or simply 

viscosity. Its dimension is Pa·s. The viscosity is the measure of the internal resis-

tance to flow in the fluid under shear.

Generally, polymeric melts do not behave in a Newtonian fashion. Their viscosity is 

not constant but is dependent on the shear rate. In reference to Equation (2.2) valid 

for Newtonian fluids, this can be expressed in the following manner:

τ η γ γ= ( )⋅  (2.3)

or

η γ
τ

γ
( )= ≠ const.  (2.4)

Note: Many polymers exhibit more or less pronounced time-dependent viscosity 

(thixotropy, rheopexy, lag in viscosity at sudden onset of shear or elongation [2,3]). 

This time dependence is usually not considered in the design of dies; hence it will 

be ignored in the following sections.

2.1.1.1  Viscosity and Flow Functions

When plotting the viscosity  in dependence on the shear rate in a log-log graph, 

we obtain a function shown in Fig. 2.1 valid for polymers at constant temperature. 

It can be seen  that for low shear rates the viscosity remains constant; however, 

with increasing shear rate at a certain point it changes linearly over a relatively 

broad range of shear rates in a log-log graph.
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This, the reduction of viscosity with increased shear rate, is referred to as pseudo-

plastic or shear-thinning behavior. The constant viscosity at low shear rates is 

called zero-shear viscosity, 0.

Figure 2.1 Representation of the dependence of viscosity on the shear rate by a viscosity 

curve

Besides the graphic representation of viscosity vs. shear rate, the so-called viscos-

ity curve, the relationship between shear stress and shear rate (also in a log-log 

graph) is referred to as a flow curve (Fig. 2.2). For a Newtonian fluid, the shear rate 

is directly proportional to the shear stress. A log-log graph therefore is a straight 

line with a slope of 1, which means that the angle between the abscissa and the 

flow curve is 45°. Any deviation from this slope directly indicates a non-Newtonian 

behavior.

  Figure 2.2 Representation of the 

 dependence of the shear rate on the 

shear stress by a flow curve
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For a pseudoplastic fluid, the slope is greater than 1, meaning that the shear rate 

increases progressively with increasing shear stress. Conversely, the shear stress 

increases with the shear rate in a less-than-proportional relationship (see also 

Chapter 3).

2.1.1.2  Mathematical Description of the Pseudoplastic Behavior of Melts

Various models describing the viscosity and flow curves were developed mathe-

matically. They differ in the mathematical methods used on one hand and in the 

adaptability and hence accuracy on the other. An overview and examples are given 

in the literature [2,4]. The most widely used models for thermoplastics and  rubbers 

will be discussed in the following section.

 Power Law of Ostwald and de Waele [5,6]

When plotting the flow curves of different polymers in a log-log graph, curves are 

obtained that consist of two approximately linear sections and one transition re-

gion (Fig. 2.3). In many cases we can operate in one of those two regions, so these 

sections of the curve can be mathematically represented in the following general 

form:

γ φ τ= ⋅
m  (2.5)

Equation (2.5) is called the power law of Ostwald and de Waele. The parameters are 

m, the flow exponent, and , the fluidity. Characteristic for the ability of a material 

to flow and its deviation from Newtonian behavior is the flow exponent m. It can be 

expressed by the following relation:

m
lg

lg
.
γ

τ
 (2.6)

Note that m is also the slope of the flow curve in the given sections of the log-log 

diagram (Fig. 2.3).

The value of m for polymeric melts lies between 1 and 6; for the range of shear 

rates between approximately 100 and 104 s–1 applicable to the design of extrusion 

dies, the corresponding values of m are between 2 and 4. For m  1,  1/ , 

which is the case of a Newtonian flow.

Since

η
τ

γ
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we obtain from Equation (2.5):

η φ τ φ γ= ⋅ = ⋅
− −

− −

1 1

1 1
1

m m m .  (2.7)

By substituting k =
−
1

m and n
m

1
we obtain the usual representation of the vis-

cosity function:

η γ= ⋅
−

k
n 1
.  (2.8)

The factor k is called the consistency factor. It represents the viscosity at a shear 

rate of  1/s. The viscosity exponent n is equal to 1 for Newtonian behavior, and 

its value for most polymers is between 0.2 and 0.7. It represents the slope of the 

viscosity curve in the observed range.

The power law is very simple mathematically: it allows an analytical treatment of 

almost all simple flow problems that can be solved for Newtonian fluids (see Chap-

ter 3). The disadvantage of the power law is that when the shear rate drops to zero, 

the viscosity value becomes infinity, and therefore the shear-rate-independent 

Newtonian region cannot be depicted. Another disadvantage is that the flow expo-

nent m enters into the dimension of the fluidity.

 Figure 2.3 Approximation of the flow curve by the power law
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Generally, the power law can be used to represent a flow or viscosity curve with an 

acceptable accuracy over only a certain range of shear rates. The size of this range 

at a given accuracy depends on the curvature of the graph's representation of this 

function.

If a flow curve has to be described by the power law over a large range, it has to be 

divided into segments, each with its own values of and m to be determined [7]. 

Therefore, in the collection of standard rheological material data [8,9], there will 

be different values of and m corresponding to different ranges of shear rates.

 Prandtl-Eyring Constitutive (sinh) Equation [7,10–12]

This model was developed by Prandtl and Eyring from observation of the place- 

exchange processes of molecules during flow. It takes the following form:

γ
τ

= ⋅










C
A

sinh  (2.9)

with material constants С in [s–1] and A in [N/m2].

The advantage of the Prandtl-Eyring model is that it describes a finite viscosity at 

small shear rates (zero-shear viscosity) and that it is readily applicable in dimen-

sional analysis [13,14]. Its mathematical application is somewhat difficult, how-

ever, because of its unwieldiness.

 Carreau Constitutive Equation [9,15,16]

This model, which is gaining increasing importance in the design of extrusion 

dies, is represented by the following equation:

η γ

γ

( )=
+ ⋅( )

A

B1
C

 (2.10)

where A describes zero-shear viscosity in [Pa·s], B the so-called reciprocal tran-

sition rate in [s], and C [–] the slope of the viscosity curve in the pseudoplastic 

 region at →∞ (Fig. 2.4).

This model by Carreau has an advantage in that it represents the actual behavior 

of the material over a much broader range of shear rates than the power law, and it 

produces reasonable viscosity values at 0 .

In addition, it is applicable for the calculation of the correlation between pressure 

and throughput in a consistent analytical form for both a capillary and a slit die 

[9,16]. As a result, this model allows rough calculations by means of a pocket cal-

culator. This is particularly useful when a convenient approximate calculation 

rather than exact analytical solution is required [9,16].
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Figure 2.4 Approximation of the viscosity curve by the Carreau constitutive equation

 Universal Viscosity Function by Vinogradov and Malkin [17,18]

Vinogradov and Malkin [17] found that, in a temperature-invariant representation 

(see Section 2.1.1.3), the viscosity functions of the following materials fall within 

the scatter range shown in Fig. 2.5: polyethylene, polypropylene, polystyrene, 

 polyisobutylene, polyvinylbutyrate, natural rubber, butadiene–styrene rubber, as 

well as cellulose acetate.

Figure 2.5 Universal viscosity curve according to Vinogradov and Malkin
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The regression line can be considered, at least for the purpose of estimation, to be 

apparently a universal viscosity function, independent of temperature and pres-

sure. This function allows the estimation of the viscosity behavior over a wide 

range of shear rates when only one point is known, while the zero-shear viscosity 

is determined by iteration.

The graphic representation of this universal viscosity function is given by the fol-

lowing regression formula [17]:

η γ
η

η γ η γ

( )=
+ ⋅ ⋅( ) + ⋅ ⋅( )

0

1 0 2 0

2
1 A A

α α  (2.11)

where

0 Zero-shear viscosity, i. e., the limiting value of viscosity for 0

A1 1.386  10–2

A2 1.462  10–3

 0.355

Here, A1 and A2 depend on the units of viscosity and shear rate. The values shown 

here are valid for the following units: 



= ⋅Pa s  and 




=

−s 1 .

The advantage of the universal Vinogradov function is that it only contains one 

free parameter, namely zero-shear viscosity 0, which can be readily determined 

by the measurements of viscosity. When keeping the regression coefficients A1, 

A2, and  constant, the accuracy of the relation becomes limited. For 0 the 

Vinogradov function approaches the limiting value, namely 0.

In the following section, it will be shown briefly how to calculate, by a simple 

 iteration, the zero-shear viscosity from a measured point [ ; ( )]γ η γp p with shear 

rate p and viscosity η γp( ) . However, the viscosity function obtained by this 

 procedure is only an estimation, and it cannot replace the viscosity measurement 

in the entire relevant range of shear rates.

The deviations from the actual function are  increasing with increasing distance 

from the known point on the curve [ ; ]γ η γp p( ) .

First, the known values are put into Equation (2.11), which is then rearranged as 

follows:

η η γ η γ η γ0 1 0 2 0

2

1= ( )⋅ + ⋅ ⋅( ) + ⋅ ⋅( )



p p pA A

α α
.  (2.12)

Equation (2.12) contains 0 on both sides. An explicit solution for 0 is not possible. 

Therefore it is subjected to an iteration procedure. It follows

η η γ η γ η γ0 1 0 2 0

2

1
1

n n n
A A

+
= ( )⋅ + ⋅ ⋅( ) + ⋅ ⋅( )











p p p

α α
.  (2.13)
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From Equation (2.13) results, with the estimated value of 0n
, an improved 

 estimated value of the zero-shear viscosity 0 1n
in the nth iteration step. The value 

of 0 1n
is then put into the (n   1)th iteration step using Equation (2.13). The fol-

lowing iteration process results:

Step 0:  Set 00
equal to the known value of viscosity, (

p
).

Step 1:  Calculate the new estimated value for 0 by putting the previous estimated 

value into Equation (2.13).

Step 2:  Decision: If the difference of the two subsequent estimated values is small 

enough, the iteration is stopped. The last estimated value for 0 is the 

 desired result. If the difference is not small enough, return to step 1

A sufficiently accurate result is usually found a"er 5 to 10 iterations. The iteration 

pattern can be easily programmed on a pocket calculator because very few pro-

gramming steps are required.

Of course, the Vinogradov model in its general form can also be used for the 

 description of the viscosity function. In this case A1, A2, and  are free parameters, 

which can be determined by regression analysis. By this a more accurate approxi-

mation is possible than with the parameters of the universal function.

On the other hand, as a universal function defined by the regression line drawn 

through the data points (Fig. 2.5), any model that approximates the curve with a 

satisfactory accuracy can be used here instead of Equation (2.11).

 Herschel-Bulkley Model [2,12,19]

With many polymers, especially with rubbers, a so-called yield stress is observed. 

Such fluids start to flow only when a finite shear stress is exceeded (yield stress). 

Fluids exhibiting this behavior are called Bingham fluids.

The flow curve of a Bingham fluid is shown schematically in Fig. 2.6. It is clearly 

seen that the shear rate is equal to zero up to the yield stress, 0, which means no 

flow occurs. Only beyond 0 will there be flow. This means that the viscosity below 

the yield stress is infinite [2].

  Figure 2.6 Schematic representation of 

the flow curve of a Bingham fluid
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In a developed flow rate profile of a Bingham fluid, there will be one range of shear 

flow in which the shear stress  is larger than 0 and another one in which  is 

smaller than 0 (Fig. 2.7 [20]). Figure 2.7 also shows that the proportion of the 

 so-called plug flow diminishes with the increase in the ratio of the shear stress at 

the wall and the yield stress. Therefore, the plug-shear flow model is valid when 

the shear stress at the wall is low, that is, when there is a small volumetric flow 

rate or a large die cross section.

 Figure 2.7 Velocity profile of a Bingham fluid in dependence on the shear stress at the wall 

and the yield stress [20]: (a) low shear stress, (b) high shear stress

The Herschel-Bulkley model [19] has been successful in describing the flow 

 behavior of polymers with a yield stress. This model results from the combination 

of a simplified Bingham model (with η τ τ= >const. for 0 [2]) and the power law, 

yielding

γ φ τ τ= ⋅ −( )0
m

.  (2.14)

For 0  0 the relation becomes the power law (Equation (2.5)) and for m  1 the 

simple Bingham model.

When rearranging Equation (2.14) the following expression for the shear stress is 

obtained:

τ τ γ γ− = ⋅ ⋅
−

0

1k n  (2.15)
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where

k n
m

= =

−

1
1

m and .  

with

η
τ τ

γ
=

− 0  (2.16)

A  relation  analogous to the power law (Equation (2.8)) is derived from Equa-

tion (2.15) for  > 0:

η γ= ⋅
−k n 1  

2.1.1.3  Influence of Temperature and Pressure on the Flow Behavior

Factors determining the flow of melts besides shear rate and shear stress  for a 

specific polymer melt are the melt temperature T, the hydrostatic pressure in the 

melt phyd, the molecular weight, and the molecular weight distribution, as well as 

additives, such as fillers and lubricants. For a given polymer formulation, the only 

free variables having an effect are or , phyd, and T.

Figure 2.8 (from [21]) illustrates a quantitative effect of the changes in tempera-

ture and pressure on the shear viscosity: an increase in pressure of approximately 

550 bar for an observed sample of PMMA (polymethylmethacrylate) resulted in a 

tenfold increase in viscosity. Or, in order to keep viscosity constant, in this case the 

temperature would have to be increased by approximately 23 °C.

Figure 2.8 Viscosity as a function of temperature and of hydrostatic pressure  

(according to [21])
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Figure 2.9 [22] provides a picture of the behavior of viscosity with the change of 

temperature for various polymers. It can be clearly seen that semicrystalline 

 polymers, which have a low Tg when compared to amorphous polymers, exhibit a 

considerably lesser temperature dependence of their viscosity than the latter. This 

influence on the ability of polymers to flow can be essentially caused by two factors 

[23,24]:

Figure 2.9 Change in viscosity with temperature for different polymers [22]

 A  thermally activated process causing the mobility of segments of a macro-

molecular chain (i. e., the intramolecular mobility)

 The probability that there is enough free volume between the macromolecular 

chains allowing their place exchange to occur

 The Influence of Temperature

When plotting viscosity curves at varied temperatures for identical polymer melts 

in a log-log graph (Fig. 2.10), the following can be established:

 First, the effect of temperature on the viscosity is considerably more pronounced 

at low shear rates, particularly in the range of the zero-shear viscosity, when 

compared to that at high shear rates.

 Second, the viscosity curves in the diagram are shi"ed with the temperature, but 

their shape remains the same.
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It can be shown that for almost all polymeric melts (so-called thermorheologically 

simple fluids [25]) the viscosity curves can be transformed into a single master 

curve that is independent of temperature. This is done by dividing the viscosity by 

the temperature corresponding to 0 and multiplying the shear rate with 0 

[1,2,25,26]. Graphically, this means that the curves are shi"ed along a straight line 

with a slope of  –1, i. e., along a line log( 0(T)) to the right and simultaneously 

 downward and thus transformed into a single curve (Fig. 2.10). This is referred to 

as the time-temperature superposition principle.

Figure 2.10 Viscosity curves for cellulose acetate butyrate (CAB) at various temperatures

This time-temperature superposition leads to the plotting of the reduced viscosity 

/ 0 against η γ0 . In this way a single characteristic function for the polymer is 

obtained:

η γ

η
η γ

,
.

T

T
f T

)(
( )
= ( )⋅( )

0

0  (2.17)

Here, T as the reference temperature can be chosen freely.

When seeking the viscosity function for a certain temperature T with only the 

 master curve or the viscosity curve at a certain other temperature T0 given, a tem-

perature shi" is necessary to obtain the required function. First, it is not known 

how much the curve has to be shi"ed. The shi" factor aT required here can be 

found as follows:

a
T

T
a

T

T
T Tor=

( )
( )

=
( )
( )

0

0 0

0

0 0

lg lg .  (2.18)
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The quantity lg aT is the distance that the viscosity curve at the reference tempera-

ture T0 has to be shi"ed in the direction of the respective axes (Fig. 2.11).

Figure 2.11 Time-temperature superposition principle for a viscosity function

There are several formulas for the calculation of the temperature shi" factor. Two 

of them are the most important and should be mentioned, namely the Arrhenius 

law and the WLF equation.

The Arrhenius law can be derived from the study of a purely thermally activated 

process of the interchange of places of molecules:

lg lg .a
T

T

E

R T T
T =

( )
( )
= −












0

0 0

0

0

1 1
 (2.19)

where E0 is the flow activation energy in J/mol specific for the given material, and 

R is the universal gas constant equal to 8.314 J/(mol·K).

The Arrhenius law is suitable particularly for the description of the temperature 

dependence of the viscosity of semicrystalline thermoplastics [9,25].

For small temperature shi"s or rough calculations, aT can be approximated from an 

empirical formula, which is not physically proven and which takes the following 

form [1,9]:

lg a T TT =− ⋅( − )0  (2.20)

where  is the temperature coefficient of viscosity specific to the given material.
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Another approach based on the free volume, i. e., the probability of the place ex-

change, was developed by Williams, Landel, and Ferry [27]. It was originally applied 

to the temperature dependence of relaxation spectra and later was applied to vis-

cosity. The relationship (also known as the WLF equation) in its most usual form is

lg lg ,a
T

T

C T T

C T T
T

S

S

S

=
( )
( )
=−

⋅( − )
+( − )

1

2

 (2.21)

which relates the viscosity (T) at the desired temperature T to the viscosity ( )TS

at the standard temperature TS with shear stress being constant. For TS equal 

 approximately to Tg  50 K [27] (i. e., 50 K above the glass transition temperature), 

C1  –8.86 and C2  101.6 K.

The glass transition temperatures of several polymers are shown in Fig. 2.9, and 

additional values are in [28]. The measurement of Tg of amorphous polymers can 

be done in accordance with DIN EN ISO 75-2, Procedure A, which is a test for the 

deflection temperature of plastics under load; in the USA the corresponding ASTM 

standard is ASTM D 648 ISO 75. The so#ening temperature determined by this test 

can be set equal to Tg [7].

A more accurate description is possible when TS (and, if necessary, C1 and C2, 

which also can be considered as almost material independent) is determined from 

regression of the viscosity curves, measured at different temperatures. Although 

the WLF equation pertains by definition to amorphous polymers only and is 

 superior to the Arrhenius law [9,24,25], it still can be used for semicrystalline 

polymers with an acceptable accuracy [22,29–32].

Figure 2.12 compares the determination of the shi# factor aT obtained from the 

Arrhenius law to that from the WLF equation [30]. When operating within the 

 temperature range ±30 K from the reference temperature, which is o#en sufficient 

for practical purposes, both relations are satisfactory.

There are basically two reasons for favoring the WLF equation, however:

 The standard temperature TS is related to the known Tg for the given material 

with a high enough accuracy (TS  Tg  50 K).

 The effect of pressure on the viscosity can be easily determined when operating 

above the standard temperature (this will be explained further at a later point).
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  Figure 2.12 Temperature shi� factor aT 

for different polymers

When the shi# of a viscosity curve from one arbitrary temperature T0 to the de-

sired temperature T is performed using the WLF equation, Equation (2.21) is used 

twofold:

lg lg lg lg
(

a
T

T

T

T

T

T

T
T

S

S=
( )
( )
=

( )
( )
⋅
( )
( )










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 (2.22)

with C1 8 86. and C2 101 6. K , and T0 is the reference temperature at which the 

viscosity is known.

 The Influence of Pressure

The effect of pressure on the flow behavior can be determined along with the ex-

pression for the temperature dependence from the WLF equation [29]. It turns out 

that the standard temperature Ts, which lies at approximately Tg  50 K, used in 

the WLF equation at 1 bar, increases with pressure. This shi# corresponds in turn 

to the shi# in Tg, which can be determined directly from a p- -T diagram [22,33].

The pressure dependence of the glass transition temperature can be assumed to be 

linear up to pressures of about 1000 bar (Fig. 2.13 [34]), thus:
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T p T p pg g bar( )= ( = )+ ⋅1 .  (2.23)

  Figure 2.13 Effect of pressure on 

the glass transition and the standard 

temperature

The resulting shi#s in Tg are of the order of 10 to 30 K per 1000 bar. At pressures 

higher than 1000 bar, the glass transition temperature increases with increasing 

pressure at a much smaller rate.

If there is no p- -T diagram available for the given polymer from which the pres-

sure dependence of its Tg could be determined, it can be estimated by the following 

relation:

T T pg g bar to K/bar≈ +( )⋅ ⋅( ) −
1 10 30 10 3

 (2.24)

where p is the desired pressure in bar. (Generally, it is known that the pressure 

affects the flow properties of amorphous polymers stronger than the flow of 

semi-crystalline polymers.)

Then, the WLF shi# from a viscosity curve at the temperature T1 and the pressure 

p1 to another one at T2 and p2 respectively can be performed. The shi# factor aT can 

be calculated as follows:

lg lg
( , )

( , )

( ( ))

(

a
T p

T p

C T T p

C T

T

S
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of the resistance of the melt to elongational deformation. The inlet pressure loss 

can be taken into account by applying Equation (5.81) and subtracting this 

 pressure loss from the driving pressure p , thus:

V f p p p H x y xL E= − − ) ( ) ( )( ∆ 0 , , .  (5.85)

Figure 5.27 Inlet pressure drop due to the flow from the distribution channel into the land gap

The fact that the inlet pressure loss pentry depends on the volumetric flow rate 

through the slit and the geometric conditions has to be considered:

∆p f V H x R xentry L= ( ) ( )



, , .  (5.86)

The disadvantages of the numerical design of the flow channel are as follows: a 

great deal of programming is necessary, the design requires long computing times, 

and mathematical stability problems frequently occur in many applications.

5.2.2.5  Considerations for Clam Shelling

So-called clam shelling (opening up) due to the existing internal pressures is one 

of the problems in the design of wide slit dies. The pressure distribution in a wide 

slit die is depicted schematically in Fig. 5.28. Figure 5.29 shows the resulting 

deformation of the die plates (see also Section 9.3 on this). The clam shelling 

 increases the melt flow in the center region of the die.

The effect of this widening can be taken into account during the die design only 

when the magnitude of the deflection as a function of the pressure distribution can 

be determined. To compensate for the widening, the die can be made in such a way 

that if it widens during the operation, it has the computed flow channel geometry. 

This means that the die is made with a much smaller land slit in the middle region.
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Figure 5.28 Typical pressure distribution in a flat slit die

  Figure 5.29 Clam shelling due to 

internal pressure in a flat slit die

Another possibility is to take the widening into account during the rheological 

 design of the land length or of the contour of the distribution channel. This means 

that the manifold has to be designed with the height of the land slit changing 

across its width [70].

The possibilities of predicting the die widening by computation are discussed in 

Section 9.3 [77].

5.2.2.6  Unconventional Manifolds

Manifold systems that accomplish the melt distribution across a distribution 

 channel and a land region are designed in such a way that for a uniform emerging 

flow there is an equal resistance to flow on each flow path. A situation where each 

flow path has equal flow history as to the residence time and shear action cannot 

be achieved by these systems (fishtail, coathanger). Therefore, alternatives have 

been recommended that are designed in such a way that each flow path is made 

the same length [78]. When observing the flow paths in a wide slit die (Fig. 5.30) 

that is made as a divergent slit channel with a constant slit height, it is obvious 

that the flow paths in the die center are shorter than those at its edges. Under the 
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assumption of a point-like melt feed, the following relationship for minimum and 

maximum length of flow are valid:

l yp 0 0( )= ,  (5.87)

l L y Lp ( )= +0

2 2 .  (5.88)

  Figure 5.30 Streamlines in 

a divergent flow channel

  Figure 5.31 Streamlines in a centrally  

injected circular section

A flow channel geometry with equal lengths on each flow path can be derived from 

a study of a centrally injected circular sector (Fig. 5.31). In this case, all flow paths 

are equally long; however, the melt discharge is not located on the desired plane. 

This can be corrected by curving the circular sector in the third dimension (z direc-

tion) so that all flow paths end on the line A–B.

Such a manifold has been used successfully in injection molding as a predistri-

butor for a film sprue [79].

In Fig. 5.32, there is a simple suggestion for the solution of the design of such a 

manifold. Each flow path is raised in the middle to such an extent (h(x)) that the 

length of the flow path ends on the edge of the die. The amount of elevation  depends 

on the point of exit x. With the projected length of the flow path
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l x y xp ( )= +0

2 2 ,  (5.89)

the length of flow at the edge of the die

l L y L l xp ( )= + = ( )0

2 2  (5.90)

Figure 5.32 Flat slit manifold with streamlines of equal length

and the resulting length of the flow path

l x l x h x( )= ( )( ) + ( )2 2
2 2

p /  (5.91)

the h(x) for each flow path follows:

h x L x( )= −
1

2

2 2 .  (5.92)

It is important to keep in mind that all the quantities refer to the point of exit x. 

The above simple suggestion for a solution is not the optimum from the rheological 

point of view because of the sharp break in the flow path, but it still was chosen for 

the illustration of the process for the determination of the geometry for a wide slit 

die with flow paths of equal length.

The advantages are

 independence of the material being used,

 independence of operation conditions,

 uniform distribution, and

 identical flow history on each flow path.
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Disadvantages of these dies are as follows:

 The die when built is rather high. For the type of adjustment of the flow path 

described above, the maximum height in the center of the die can be a quarter of 

the width of the exit slit. Therefore, the application of this principle is feasible 

for narrow dies only.

 Both halves of the die can be made only by CNC milling machines. Moreover, the 

machining times are long and the material consumption is very high because a 

great deal of it has to be machined away to produce a deep channel.

 The setting up of the control program for the CNC machines is very time con-

suming, considerably more so than that for conventional wide slit dies with a 

manifold.

5.2.2.7  Operating Performance of Wide Slit Dies

As explained earlier, it is possible to design extrusion dies with wide slit openings 

that are independent of the operating conditions. When the width of the die is 

more than 500 mm, the long lands resulting from the design procedure give rise to 

high pressure losses, which lead to high separating forces. These can be held back 

only by extremely thick die plates. Because of this limitation, the wide slit dies are 

in most cases designed as dependent on operating conditions.

Since these dies are operating under a variety of operating conditions and with a 

variety of materials, their process behavior, that is, the effect of changes in  material 

and operating conditions on the melt distribution, is an important design criterion. 

A simple method to determine if the die is dependent on the process conditions is 

to do the design for a spectrum of operating conditions and then compare the 

 resulting geometries (Fig. 5.33) [80].

The larger the change in the resulting geometry at various operating conditions, 

the more process-dependent the die is.

The procedure described above provides a reference point for the design, but an 

evaluation of the resulting melt distribution is not possible.

This evaluation is only possible a#er the computation of the effect of the operating 

point on the geometry of coathanger manifolds, designed to be independent of 

 operating conditions [80] and die flow simulation [76,81–84].

For the above computation, the distribution channel is divided into segments, in-

cluding the corresponding slit segments (Fig. 5.26). A flow and pressure balance is 

carried out successively for each segment. The procedure here is similar to the 

numerical design of the flow channel, the only difference being that in this case 

the geometry is fully specified and the exiting flow is calculated.
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