
1 Continuum Mechanics: 
Review of Principles

 ■ 1.1  Strain and Rate-of-Strain Tensor

1.1.1  Strain Tensor

1.1.1.1  Phenomenological Definitions

Phenomenological definitions of strain are first presented in the following examples.

1.1.1.1.1  Extension (or Compression)

In extension, a volume element of length l is elongated by l in the x direction, as 

illustrated by Figure 1.1. The strain can be defined, from a phenomenological point 

of view, as  = l/l.

0 x

U(x) U(l)

l

Figure 1.1  Strain in extension

For a homogeneous deformation of the volume element, the displacement U on the 

x-axis is ( )
x

U x l
l

, and 
dU l

dx l
. Hence another definition of the strain is 

dU

dx
.
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1.1.1.1.2  Pure Shear

A volume element of square section h × h in the x-y plane is sheared by a value a 

in the x-direction, as shown in Figure 1.2. Intuitively, the strain may be defined as 

 = a/h. For a homogeneous deformation of the volume element, the displacement 

(U, V) of point M(x, y) is

( ) ; 0
y

U y a V
h

 (1.1)

Hence, another possible definition of the strain is 
dU

dy
.

x

a

h U(x,y)

y

Figure 1.2  Strain in pure shear

1.1.1.2  Displacement Gradient

More generally, any strain in a continuous medium is defined through a field of the 

displacement vector U(x, y, z) with coordinates

U(x, y, z), V(x, y, z), W(x, y, z)

The intuitive definitions of strain make use of the derivatives of U, V, and W with 

respect to x, y, and z, that is, of their gradients. For a three-dimensional flow, the 

material can be deformed in nine different ways: three in extension (or compression) 

and six in shear. Therefore, it is natural to introduce the nine components of the 

displacement gradient tensor U :

U U U

x y z

V V V

x y z

W W W

x y z

U  (1.2)
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This notion of displacement gradient applied to the two previous deformations 

presented in Section 1.1.1.1 leads to the following expressions:

 Extension deformation:

0 0

0 0 0

0 0 0

U  (1.3)

 Shear deformation:

0 0

0 0 0

0 0 0

U  (1.4)

If this notion is applied to a volume element that has rotated  degrees without 

being deformed, as shown in Figure 1.3, the displacement vector can be written as

( ) (cos 1) sin

( ) sin (cos 1)

U x y x y

V x y x y
U  (1.5)

V

x

y

U

θ

θ

(x,y)

Figure 1.3  Rigid rotation

For a very small value of : ( , )

( , )

U x y y

V x y x

 (1.6)

hence 

0 0

0 0

0 0 0

U  (1.7)

It is obvious from this result that U  cannot physically describe the strain of 

the material since it is not equal to zero when the material is under rigid rotation 

without being deformed.
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1.1.1.3  Deformation or Strain Tensor 

To obtain a tensor that physically represents the local deformation, we must make 

the tensor U  symmetrical, as follows:

 Write the transposed tensor (symmetry with respect to the principal diagonal); 

the transposed deformation tensor is

( )t

U V W

x x x

U V W

y y y

U V W

z z z

U  (1.8)

 Write the half sum of the two tensors, each transposed with respect to the other:

1
( )

2

t
U U  (1.9)

or   
1

2

ji
ij

j i

UU

x x
 (1.10)

where Ui stands for U, V, or W and xi for x, y, or z.

Let us now reexamine the three previous cases:

 In extension (or compression):

0 0

0 0 0

0 0 0

 (1.11)

The deformation tensor  is equal to the displacement gradient tensor U .

 In pure shear:

1
0 0

2

1
0 0

2

0 0 0

 (1.12)

The tensor  is symmetric, whereas U  is not. We see that pure shear is physically 

imposed in a nonsymmetrical manner with respect to x and y; however, the strain 

experienced by the material is symmetrical.
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 In rigid rotation:

0 0 0

0 0 0

0 0 0

 (1.13)

The definition of  is such that the deformation is nil in rigid rotation; it is physically 

satisfactory, whereas the use of U  for the deformation is not correct.

As a general result, the tensor  is always symmetrical; that is, it contains only six 

independent components:

 three in extension or compression: xx, yy, zz

 three in shear: xy = yx, yz = zy, zx = xz

Important Remarks

(a) The definition of the tensor  used here is a simplified one. One can show rigor-

ously that the strain tensor in a material is mathematically described by the tensor 

 (Salençon, 1988):

1 1

2 2

ji k k k k
ij ij

k kj i i j i j

UU U U U U

x x x x x x
 (1.14)

This definition of the tensor  is valid only if the terms Ui / xj are small. So the 

expressions for the tensor written above are usable only if , , , and so on are 

small (typically less than 5%). This condition is not generally satisfied for the flow 

of polymer melts. As will be shown, in those cases, we will use the rate-of-strain 

tensor .

(b) The deformation can also be described by following the homogeneous deforma-

tion of a continuum media with time. The Cauchy tensor is then used, defined by

 with i
ij

j

t x
F

X
C F F  (1.15)

where xi are the coordinates at time t of a point initially at Xi, and Ft is the transpose 

of F. The inverse tensor, called the Finger tensor, will be used in Chapter 2:

1
1 1 t

C F F  (1.16)

1.1.1.4  Volume Variation During Deformation

Only in extension or compression the strain may result in a variation of the volume. 

If lx, ly, lz are the dimensions along the three axes, the volume, V , is then

yx z
x y z xx yy zz

x y z

dldl dld
l l l

l l l

V
V

V
 (1.17)



6 1 Continuum Mechanics: Review of Principles

1.1.2  Rate-of-Strain Tensor

For a velocity field u(x, y, z), the rate-of-strain tensor is defined as the limit:

0
lim

t dt

t

dt dt
 (1.18)

where t dt

t
 is the deformation tensor between times t and t + dt. However, in this 

time interval the displacement vector is dU = u dt. Hence,

1

2

jt dt i
ij t

j i

uu
dt

x x
 (1.19)

where ui = (u, v, w) are the components of the velocity vector. The components of 

the rate-of-strain tensor become

1

2

ji
ij

j i

uu

x x
 (1.20)

As in the case of , this tensor is symmetrical:

1 1

2 2

1 1 1
( )

2 2 2

1 1

2 2

t

u u v u w

x y x z x

u v v v w

y x y z y

u w v w w

z x z y z

u u  (1.21)

The diagonal terms are elongational rates; the other terms are shear rates. They are 

often denoted  and , respectively.

Remark: Equation (1.20) is the general expression for the components of the rate-

of-strain tensor, but its derivation from the expression (1.18) for the strain tensor 

is correct only if the deformations and the displacements are infinitely small (as 

in the case of a high-modulus elastic body). For a liquid material, it is not possible, 

in general, to make use of expression (1.19). Indeed, a liquid experiences very 

large deformations for which the tensor  has no physical meaning. Tensors , C, 

or C–1 are used instead.
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1.1.3  Continuity Equation

1.1.3.1  Mass Balance

Let us consider a volume element of fluid dx dy dz (Figure 1.4). The fluid density 

is (x, y, z, t).

dx

dz
σyy

0

z

x

y

u(x+dx)u(x)

v(y+dy)

v(y)

w(z)

w(z+dz)

dy

Figure 1.4  Mass balance on a cubic volume element

The variation of mass in the volume element with respect to time is dxdydz
t

. This 

variation is due to a balance of mass fluxes across the faces of the volume element:

 In the x direction: ( ) ( ) ( ) ( )x dx u x dx x u x dydz

 In the y direction: ( ) ( ) ( ) ( )y dy v y dy y v y dzdx

 In the z direction: ( ) ( ) ( ) ( )z dz w z dz z w z dxdy

Hence, dividing by dx dy dz and taking the limits, we get

( ) ( ) ( ) 0u v w
t x y z

 (1.22)

which can be written through the definition of the divergence as

( ) 0
t

u  (1.23)

This is the continuity equation.

Remark: This equation can be written using the material derivative .
d

dt t
u , 

leading to 0
d

dt
u .
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1.1.3.2  Incompressible Materials

For incompressible materials,  is a constant, and the continuity equation reduces to

0u  (1.24)

This result can be obtained from the expression for the volume variation in small 

deformations:

tr
xx yy zz

dV

V
 (1.25)

also: 
1

tr xx yy zz

d u v w

dt x y z
u

V

V
 (1.26)

It follows that  0 tr 0 0
d

dt
u

V
 (1.27)

1.1.4  Problems

1.1.4.1  Analysis of Simple Shear Flow

Simple shear flow is representative of the rate of deformation experienced in many 

practical situations. Homogeneous, simple planar shear flow is defined by the fol-

lowing velocity field:

( ) 0 0
U

u y y v w
h

where Ox is the direction of the velocity, Oxy is the shear plane, and planes parallel 

to Oxz are sheared surfaces;  is the shear rate. Write down the expression for the 

tensor  for this simple planar shear flow.

x

h

U
y

z

Figure 1.5  Flow between parallel plates



91.1 Strain and Rate-of-Strain Tensor

Solution

1
0 0

2

1
0 0

2

0 0 0

 (1.28)

1.1.4.2  Study of Several Simple Shear Flows

One can assume that any flow situation is locally simple shear if, at that given point, 

the rate-of-strain tensor is given by the above expression (Eq. (1.28)). Then show that 

all the following flows, encountered in practical situations, are locally simple shear 

flows. Obtain in each case the directions 1, 2, 3 (equivalent to x, y, z for planar shear) 

and the expression of the shear rate  (use the expressions of  in cylindrical and 

spherical coordinates given in Appendix 1, see Section 1.4.1).

1.1.4.2.1  Flow between Parallel Plates (Figure 1.6)

The velocity vector components are ( ) 0 0u y v w .

x

y

z

Figure 1.6  Flow between parallel plates

Solution

1
0 0

2

1
0 0

2

0 0 0

du

dy

du

dy
 (1.29)
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1.1.4.2.2  Flow in a Circular Tube (Figure 1.7)

The components of the velocity vector ( )r zu  in a cylindrical frame are 

0 0 ( )u v w w r .

r

z

Figure 1.7  Flow in a circular tube

Solution

1
0 0

2

0 0 0

1
0 0

2

dw

dr

dw

dr

 (1.30)

Directions 1, 2, and 3 are respectively z, r, and . The shear rate is 
dw

dr
.

1.1.4.2.3  Flow between Two Parallel Disks

The upper disk is rotating at an angular velocity 0, and the lower one is fixed 

(Figure 1.8). The velocity field in cylindrical coordinates has the following expression:

( ) 0 ( ) 0r z u v r z wu

z

θ

r

Ω0

Figure 1.8  Flow between parallel disks

(a) Show that the tensor  does not have the form defined in Section 1.1.4.1.

(b) The sheared surfaces are now assumed to be parallel to the disks and rotate at 

an angular velocity (z). Calculate v(r,  z) and show that the tensor  is a simple 

shear one.
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Solution

(a)

1
0 0

2

1 1
0

2 2

1
0 0

2

v v

r r

v v v

r r z

v

z

 (1.31)

(b) If v(r, z) = r (z), then 0
v v

r r
 and  is a simple shear tensor. The shear rate 

is 
dv d

r
dz dz

 and directions 1, 2, and 3 are , z, and r, respectively.

1.1.4.2.4  Flow between a Cone and a Plate

A cone of half angle 0 rotates with the angular velocity 0. The apex of the cone 

is on the disk, which is fixed (Figure 1.9). The sheared surfaces are assumed to be 

cones with the same axis and apex as the cone-and-plate system; they rotate at an 

angular velocity ( ).

z

θ

ϕΩ

r

0

0

Figure 1.9  Flow in a cone-and-plate system

Solution

In spherical coordinates (r, , ), the velocity vector components are u = 0, v = 0, 

and w = r sin  ( ).

0 0 0

1
0 0 sin

2

1
0 sin 0

2

d

d

d

d

 (1.32)

The shear rate is sin
d

d
, and directions 1, 2, and 3 are , , and r, respectively.
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1.1.4.2.5  Couette Flow

A fluid is sheared between the inner cylinder of radius R1 rotating at the angular 

velocity 0 and the outer fixed cylinder of radius R2 (Figure 1.10). The components 

of the velocity vector u(r, , z) in cylindrical coordinates are u = 0, v(r), and w = 0.

r

θ

Ω0Ω0

z

R1

R2

Figure 1.10  Couette flow

Solution

1
0 0

2

1
0 0

2

0 0 0

dv v

dr r

dv v

dr r
 (1.33)

The shear rate is 
dv v

dr r
, and directions 1, 2, and 3 are , r, and z, respectively.

1.1.4.3  Pure Elongational Flow

A flow is purely elongational or extensional at a given point if the rate-of-strain 

tensor at this point has only nonzero components on the diagonal.

1.1.4.3.1  Simple Elongation

An incompressible parallelepiped specimen of square section is stretched in direc-

tion x (Figure 1.11). Then 
1 dl

l dt
 is called the elongation rate in the x-direction. 

Write down the expression of .
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z

y

x

l

dl

Figure 1.11  Deformation of a specimen in elongation

Solution

Assuming a homogeneous deformation, the velocity vector is u x v y w zu  

and

1du dl

dx l dt
 (1.34)

The sample section remains square during the deformation, so 
dv dw

dy dz
. Incom-

pressibility implies 2 0
dv

dy
. Therefore, 

2

dv dw

dy dz
 and

0 0

0 0
2

0 0
2

 (1.35)

1.1.4.3.2  Biaxial Stretching: Bubble Inflation

The inflation of a bubble of radius R and thickness e small compared to R is con-

sidered in Figure 1.12.

a) Write the rate-of-strain components in the r  directions.

b) Write the continuity equation for an incompressible material and integrate it.

c) Show the equivalence between the continuity equation and the volume con-

servation.
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z

y

x

ϕ

r
θ

R

e

Figure 1.12  Bubble inflation

Solution

(a) The bubble is assumed to remain spherical and to deform homogeneously so 

that the shear components are zero. The rate-of-strain components are as follows:

 In the thickness (r) direction: 
1

rr

de

e dt

 In the -direction: 
21 1

2

d R dR

R dt R dt

 In the -direction: 
2 sin1 1

2 sin

d R dR

R dt R dt

(b) For an incompressible material, 
1 2

0
de dR

e dt R dt
, which can be integrated to 

obtain 2 cstR e .

(c) This is equivalent to the global volume conservation: 2 2

0 04 4R e R e .

 ■ 1.2  Stresses and Force Balances

1.2.1  Stress Tensor

1.2.1.1  Phenomenological Definitions

1.2.1.1.1  Extension (or Compression) (Figure 1.13)

An extension force applied on a cylinder of section S induces a normal stress n = F/S.

F

S

F

Figure 1.13  Stress in extension
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1.2.1.1.2  Simple Shear (Figure 1.14)

A force tangentially applied to a surface S yields a shear stress  = F/S.

The units of the stresses are those of pressure: pascals (Pa).

F

F
S

Figure 1.14  Stress in simple shear

1.2.1.2  Stress Vector

Let us consider, in a more general situation, a surface element dS in a continuum. 

The part of the continuum located on one side of dS exerts on the other part a force 

dF. As the interactions between both parts of the continuum are at small distances, 

the stress vector T at a point O on this surface is defined as the limit:

0
lim

dS

d

dS

F
T  (1.36)

At point O, the normal to the surface is defined by the unit vector, n, in the outward 

direction, as illustrated in Figure 1.15.

n

n

T

O

Figure 1.15  Stress applied to a surface element

The stress components can be obtained from projections of the stress vector:

 Projection on n: 
n

T n

where n is the normal stress (in extension, n > 0; in compression, n < 0).

 Projection on the surface:  is the shear stress.



16 1 Continuum Mechanics: Review of Principles

1.2.1.3  Stress Tensor

The stress vector cannot characterize the state of stresses at a given point since it 

is a function of the orientation of the surface element, that is, of n. Thus, a tensile 

force induces a stress on a surface element perpendicular to the orientation of the 

force, but it induces no stress on a parallel surface element (Figure 1.16).

z

Figure 1.16  Stress vector and surface orientation

The state of stresses is in fact characterized by the relation between T and n and, 

as we will see, this relation is tensorial. Let us consider an elementary tetrahedron 

OABC along the axes Oxyz (Figure 1.17): the x, y, and z components of the unit normal 

vector to the ABC plane are the ratios of the surfaces OAB, OBC, and OCA to ABC:

x y z

OBC OCA OAB
n n n

ABC ABC ABC

z

y

x
O

n(nx,ny,nz)

T(Tx,Ty,Tz)

A

yy
B

Figure 1.17  Stresses exerted on an elementary tetrahedron

Let us define the components of the stress tensor in the following table:

Projection on of the stress vector exerted on the face normal to

Ox Oy Oz

Ox xx xy xz

Oy yx yy yz

Oz zx zy zz
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The net surface forces acting along the three directions of the axes are as follows:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x xx xy xz

y yx yy yz

z zx zy zz

T ABC OBC OAC OAB

T ABC OBC OAC OAB

T ABC OBC OAC OAB

with OA, OB, OC being of the order of d; the surfaces OAB, OBC, and OCA are of the 

order of d2; and the volume OABC is of the order of d3. The surface forces are of the 

order of Td
2 and the volume forces of the order of Fd

3 (e.g., F = g for the gravitational 

force per unit volume).

When the dimension d of the tetrahedron tends to zero, the volume forces become 

negligible compared with the surface forces, and the net forces, as expressed above, 

are equal to zero. Hence, in terms of the components of n:

x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

T n n n

T n n n

T n n n

 (1.37)

This result can be written in tensorial notation as

T n  (1.38)

where  is the stress tensor, which contains three normal components and six shear 

components defined for the three axes. As in the case of the strain, the state of the 

stresses is described by a tensor.

1.2.1.4  Isotropic Stress or Hydrostatic Pressure

The hydrostatic pressure translates into a stress vector that is in the direction of n 

for any orientation of the surface:

pT n  (1.39)

The corresponding tensor is proportional to the unit tensor I:

0 0

0 0

0 0

p

p p

p

I  (1.40)

1.2.1.5  Deviatoric Stress Tensor

For any general state of stresses, the pressure can be defined in terms of the trace 

of the stress tensor as

1
tr

3 3

xx yy zz
p  (1.41)
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The pressure is independent of the axes since the trace of the stress tensor is an invari-

ant (see Appendix 2, see Section 1.4.2). It could be positive (compressive state) or rel-

atively negative (extensive state, possibly leading to cavitation problems in a liquid).

The stress tensor can be written as a sum of two terms, the pressure term and a 

traceless stress term, called the deviatoric stress tensor :

pI  (1.42)

Examples

 Uniaxial extension (or compression):

11

11

11 11

11

2
0 0

30 0

0 0 0 0 0
3 3

0 0 0

0 0
3

p  (1.43)

 Simple shear under a hydrostatic pressure p:

0 0 0

0 0 0

0 0 0 0 0

p

p

p

 (1.44)

More generally, we will see that the stress tensor can be decomposed into an iso-

tropic arbitrary part denoted as p I, and a tensor called the extra-stress tensor . 

The expressions of the constitutive equations in Chapter 2 will use either the devi-

atoric part of the stress tensor  for viscous behaviors or the extra-stress tensor  

for viscoelastic behaviors (in this case,  is no longer a deviator, and p  is not the 

hydrostatic pressure).

1.2.2  Equation of Motion

1.2.2.1  Force Balances

Considering an elementary volume of material with a characteristic dimension d:

 The surface forces are of the order of d2, but the definition of the stress tensor is 

such that their contribution to a force balance is nil.

 The volume forces (gravity, inertia) are of the order of d3, and they must balance 

the derivatives of the surface forces, which are also of the order of d3.

We will write that the resultant force is nil (Figure 1.18).
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σxx

σyx

σzx dx

dz

dy

σxy

σyy

σzy

σyz

σxz
σzz

0

z

x

y

Figure 1.18  Balance of forces exerted on a volume element

The forces acting on a volume element dx dy dz are the following:

 The mass force (generally gravity): F dx dy dz

 The inertial force:  dx dy dz =  (du/dt) dx dy dz

 The net surface force exerted by the surroundings in the x-direction:

( ) ( ) ( ) ( ) ( ) ( )
xx xx xy xy xz xz

x dx x dydz y dy y dzdx z dz z dxdy
 

and similar terms for the y and z-directions.

Dividing by dx dy dz and taking the limits, we obtain for the x, y, and z components:

0

0

0

xyxx xz
x x

yx yy yz

y y

zyzx zz
z z

F
x y z

F
x y z

F
x y z

 (1.45)

The derivatives of ij are the components of a vector, which is the divergence of the 

tensor . Equation (1.45) may be written as

0F  (1.46)

This is the equation of motion, also called the dynamic equilibrium. It is often conve-

nient to express the stress tensor as the sum of the pressure and the deviatoric stress:

0p F  (1.47)
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1.2.2.2  Torque Balances

Let us consider a small volume element of linear dimension d; the mass forces of the 

order of d3 induce torques of the order of d4. There is no mass torque, which would 

result in torques of the order of d3 (as in the case of a magnetic medium). Finally, 

the surface forces of the order of d2 induce torques of the order of d3, so only the 

net torque resulting from these forces must be equal to zero.

If we consider the moments about the z-axis (Figure 1.19), only the shear stresses 

xy and yx on the upper (U) and lateral (L) surfaces of the element dx dy dz lead to 

torques. They are obtained by taking the following vector products:

0 0

: 0 0

0 0

xy

xy

xy

dxdz

dy

dxdydz

 (1.48)

0 0

: 0 0

0 0

yx yx

yx

dx

dydz

dxdydz

 (1.49)

σxx

σyx

σzx
dx

dz

dy

σxy

σyy σzy

σyy

σxy

σzy

0

z

x

y

σxx

0σyx

σzx

(U)

(L)

Figure 1.19  Torque balance on a volume element

A torque balance, in the absence of a mass torque, yields xy = yx. In a similar way, 

yz = zy and zx = xz. The absence of a volume torque then implies the symmetry 

of the stress tensor. Therefore, as for the strain tensor , the stress tensor has only 

six independent components (three normal and three shear components).
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 – defects    770

Cogswell method    135, 

767

coinjection    567

Cole–Cole plot    128

complex modulus    80, 126

complex viscosity    69, 

80, 128

compounding    488

compressibility    549, 

553, 751, 756

compression ratio    335

compression zone    304, 

333, 348, 373

cone-and-plate rheometer    

123, 164

confined flows    255

consistency    49

Constitutive equation    

35, 52, 68, 92, 252, 253

continuity equation    7

convected derivative    86, 

158

Symbol
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convection    196

convective stability    774, 

776

cooling    190, 525, 558

 – of films    711

 – ring    669

Couette flow    12, 73, 

168, 307

Couette Flow    44, 60, 101

Coulomb’s law    310

counterpressure flow    344

Cox–Merz rule    128

critical draw ratio    789, 

795, 798

critical shear rate    737, 

752, 754, 765, 768

critical shear stress    784

critical stress    737, 742, 

749, 754, 755, 767

Cross model    50

crystallization temperature    

529, 552

cumulative strain    492

D

damping function    93

Deborah number    88, 

254, 630, 652, 674, 

709, 798

deformation or strain 

tensor    4

delay zone    322, 324

deviatoric stress tensor    17

direct numerical 

simulation    778

dispersive mixing    488, 

492

dissipated power    179

distributive mixing    488, 

489

dog-bone defect    642, 802

drawing force    634, 665, 

666

drawing instabilities    789

draw ratio    619, 621, 

642, 664, 789

draw resonance    789

dynamic equilibrium    19, 

26, 28

dynamic mixer    359

E

eigenvalue    776, 796, 804

Einstein equation    61

elastic dumbbell    89, 149

elongational rates    6

elongational rheometer    

132

elongational viscosity    

34, 87, 103, 131

emissivity    188, 243, 

636, 713

encapsulation    409

energy balance    634, 

655

energy balance equation    

606

energy equation    182, 

183, 184, 252, 290

entanglement    50, 89, 

739, 741, 752, 755

enthalpy of crystallization    

184

equation of motion    18

equilibrium regime    205, 

207, 215

exit pressure    120

extrudate swell    72, 83

extrusion blow molding    

679, 681

extrusion defects    731

Eyring theory    142

F

feedblock    416

feeding    309

 – zone    303

fiber    63, 569

 – spinning    619, 789, 

795

filled polymers    60

filling    522, 526

 – ratio    437, 477

film-blowing    661, 792, 

803

 – die    378, 383, 408

film shrinkage    655

finger strain tensor    93

finite difference methods    

285

finite element    611, 614, 

693

finite elements method    

283, 287

fixed-point method    284

flat die    380, 392, 416

flight angle    304, 440

flow birefringence    294

force balance    252

forced convection    188, 

232, 239, 242, 635, 

661, 669, 712

fountain flow    534

Fourier’s law    178

free convection    188, 

232, 235, 237

free surface flows    255

free volume    148

freezing line    671, 674

 – height    662, 722

frequency sweep    126

friction coefficient    310, 

324

Froude number    38
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G

Galerkin method    283, 

290

gas-assisted injection 

molding    564

glass transition    116

Graetz number    213

Grashof number    235

grooved barrel    319

H

heat capacity    181, 189

heat flux    178

heat penetration thickness    

193

heat transfer boundary 

conditions    256

heat transfer coefficient    

185, 200, 214, 232, 

237, 242, 246, 460, 

471, 478, 635, 712

Hele-Shaw Approximations    

260

Hele-Shaw equation    

262, 282, 541, 553

helical defect    732, 734, 

759

Herschel-Bulkley model    

68

holding phase    523, 548

hydrodynamics bearings    

272

hydrostatic pressure    17

I

incompressible materials    

8

inflation time    683

injection cycle    522, 524

injection-molding machine    

521

interface instability    773

interfacial tension    482

internal energy    177, 690

internal pressure    666, 

680

interpenetration zone    

438, 442, 454

intrinsic viscosity    62

iterative method    285, 

293

J

Jauman derivative    94, 

160

Jeffery equation    65

Johnson and Segalman 

model    94

K

Kelvin-Voigt model    76

kinematics boundary 

conditions    255

kinematic viscosity    36

kneading disk    436, 447, 

461, 508

Krieger-Dougherty 

equation    62, 451

L

laser doppler velocimetry    

140, 743, 753

left-handed screw element    

444, 447, 453, 457, 461

length stretch    489

level-set    544

linear domain    126

linear stability    795, 800, 

804

linear viscoelasticity    75, 

108, 132

lodge model    92

longitudinal flow    343

loss modulus    80

lubrication approximations    

259, 295, 297, 540, 

553, 592, 594

M

Maillefer screw    338

mass balance    252

master curve    117, 128

material derivative    177

matteness defect    781, 

783

Maxwell model    75, 85, 

95

mechanical–thermal 

coupling    220

melt fracture    731

melting mechanism    323, 

368

melting model    328, 335

melting rate    328

melting zone    303, 322, 

437, 447

melt pool    322, 325, 

366, 447

membrane    681, 686, 

697

 – hypothesis    673

 – model    644, 646

memory function    93

meshing    287

mixing elements    359, 

460

molecular weight    89, 

144, 503, 737, 742, 

747, 750, 755, 758

Mooney method    122, 

761

multicavity mold    523, 

575
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N

nanocomposite    70, 492

Navier–Stokes equation    

26, 28, 38

neck-in    642, 800

Newtonian behavior    33, 52

Newtonian plateau    48

Newton method    285

no-flow temperature    529

normal stress difference    

81, 120, 124, 130, 767, 

770

Nusselt number    183, 

201, 214, 233, 235, 

240, 265, 353, 460, 

478, 606, 635, 712

O

Oldroyd-B model    93, 693

Oldroyd derivative    86, 159

optimization    357, 364, 

506

orientation tensor    64, 94

oscillating defect    732, 

745, 769

oscillatory shear    126, 

130, 494

overheating    359, 371, 

388, 390, 395

P

packing    524, 548, 549

pancake die    409

parallel-plate rheometer    

130

parison    679, 686

particulate models    320

Peclet number    191, 206, 

290

Phan-Thien Tanner model    

94

phase angle    126

physical properties

 – of air    238

 – of water    238

pipe die    379, 388

polymer blends    481

polymerization    503, 507

polymer processing aids    

742

pom-pom model    91, 293

postextrusion calendering    

610

Power law    49, 52

 – index    49, 54, 393

Prandtl number    235, 

239, 713

preform    680, 695

pressure-dependent 

coefficient    118

pressure flow    40, 53, 

56, 71, 168

pressure hole    120

pressure oscillations    

745, 750

principal stress difference    

294

profile die    381, 399

pumping zone    303, 339, 

364, 373

pure shear    2

PVT    524, 551

R

Rabinowitsch correction    

111, 162

radiation    188, 242

radiative heat transfer    636

rate-of-strain tensor    6, 

26, 27

Rayleigh bearing    273, 

275, 344

Rayleigh instability    482

Rayleigh number    234

reactive extrusion    499

relaxation time    74, 88, 

90, 125, 129

reptation    90

residence time distribution    

345, 473

residual stresses    558

resistances    186

restrictive elements    437

Reynolds bearing    273, 

277

Reynolds equation    37, 

260, 277, 348, 388, 

594, 602, 606

Rheo-optics    135

right-handed screw element    

437, 452, 457

rocket defect    783, 786

roll bending    590, 608

roller bearing    274, 592

Rouse model    89

S

scale-up    506

screw pitch    304, 440

separating force    597, 608

shape factor    64, 347, 455

sharkskin defect     

732–734, 769

shear rates    6

shear-thinning    48, 50, 

601, 603

shift factor    114, 116

shooting method    629, 709

shrinkage    525, 548, 

554, 558

simple shear    8, 24, 33, 

35, 39, 44, 53, 55, 59, 

81, 95, 168
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single-screw extruder    303

slab method    281, 637

slender body theory    263

slender thread 

approximation    623

slip velocity    599

slit die rheometer    119

solids conveying zone    445

specific heat    181

specific mechanical energy 

(SME)    450, 495

spread height    592, 594, 

603

staggering angle    466, 468

stanton number    797

static mixer    359

Stefan-Boltzmann 

constant    188, 242

stick-slip    732, 733, 745, 

752, 755

storage modulus    80

strain    1

 – hardening    132

 – recovery    74, 78

stream function    614

streamlines    597

stress    14

 – relaxation    78

 – retardation    74, 78

 – tensor    16

 – vector    15

stretch blow molding    

680, 692

stretching force    623, 

630, 632

suspension    61

T

Tait    552

T-die    403

temperature field    656

thermal conductivity    178

thermal contact resistance    

206, 533, 554

thermal diffusivity    189, 

191

thermal effusivity    189, 

195

thermal regime    204

thickness distribution    696

thickness recovery    592, 

612

thick shell    681

thin flow    540, 553

thin layer flows    280

thin-shell assumption    

646, 653

three-layer flow    423

time–temperature 

superposition    114, 127

transition regime    205, 213

transverse flow    341

Trouton behavior    36, 132

Trouton equation    264, 628

twin-screw extruder    433

two-layer flow    411, 420, 

425

two-stage extruder    359

U

unattainable zone    630, 

651, 674, 801

uniaxial extension    36

V

velocity-gradient tensor    

25, 27

velocity profiles    638

viscoelastic computations    

292

viscometric functions    

81, 86, 121, 165

viscosity    33, 34, 36, 48, 

109, 119, 142

viscous dissipation    180, 

604, 636

volume defects    733, 

759, 769

vorticity    615

V-shaped defect    782, 

784

W

wall slip    121, 741–743, 

749, 754, 761, 768

water-assisted injection 

molding    566

weight-averaged total 

strain    346

Weissenberg effect    73, 

82

Weissenberg number    88, 

254, 778, 780

wire-coating die    381, 

395

WLF equation    116

Y

yield stress    68, 494


